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ABSTRACT 
Motivation: The elucidation of biological pathways enriched with 
differentially expressed genes has become an integral part of the 
analysis and interpretation of microarray data. Several statistical 
methods are commonly used in this context, but the question of the 
optimal approach has still not been resolved.  
Results: We present a logistic regression based method (LRpath) 
for identifying predefined sets of biologically related genes enriched 
with (or depleted of) differentially expressed transcripts in microarray 
experiments.  We functionally relate the odds of gene set member-
ship with the significance of differential expression, and calculate 
adjusted p-values as a measure of statistical significance. The new 
approach is compared to Fisher’s exact test and other relevant me-
thods in a simulation study and in the analysis of two breast cancer 
datasets. Overall results were concordant between the simulation 
study and the experimental data analysis, and provide useful infor-
mation to investigators seeking to choose the appropriate method. 
LRpath displayed robust behavior and improved statistical power 
compared to tested alternatives. It is applicable in experiments in-
volving two or more sample types, and accepts significance statis-
tics of the investigator’s choice as input. 
Availability: An R function implementing LRpath can be down-
loaded from http://eh3.uc.edu/lrpath.   
Contact: Mario.medvedovic@uc.edu
Supplementary information: Supplementary data are available at 
Bioinformatics online and at http://eh3.uc.edu/lrpath. 

1 INTRODUCTION  
The identification of predefined sets of biologically related genes 
(gene sets) enriched with differentially expressed genes (DEGs) 
(Tavazoie et al. 1999) has become a routine part of the analysis 
and interpretation of microarray data (Curtis et al. 2005). Sets of 
genes associated with the same Gene Ontology term (Ashburner et 
al. 2000; Harris et al. 2004) or the same KEGG pathway (Kanehisa 
et al. 2006) are two commonly used collections of such predefined 
groups.  
  
*To whom correspondence should be addressed.  

The most commonly used approach to identifying enriched sets 
of genes is based on counting the number of genes in such a set 
that are also differentially expressed. The statistical significance of 
such overlap is then established using the Fisher’s exact or chi-
squared tests. Various web-based or downloadable computer pro-
grams utilizing these methods have been developed, such as Onto-
Express (Draghici et al. 2003; Khatri et al. 2005), David/EASE 
(Dennis, Jr. et al. 2003; Hosack et al. 2003), the Gostats package 
of Bioconductor (Gentleman, 2005), GOMiner (Zeeberg et al. 
2003; Zeeberg et al. 2005), and FuncAssociate (Berriz et al. 2003).  
Khatri and Draghici (Khatri and Draghici 2005) provided a com-
parison of several such programs, and (Rivals et al. 2007) pre-
sented a thorough review.  The inherent limitation of approaches 
that are based on counts of differentially expressed genes is the 
requirement to choose a specific significance cutoff level to distin-
guish between genes that are changed versus those that are not.  
Different threshold choices may lead to dramatically different en-
riched categories, and thus different biological conclusions (Pan et 
al. 2005).  

Several methods have been proposed to overcome the limitations 
of such basic procedures (Table 1).  BayGO still uses significance 
counts, but employs a Bayesian framework and accounts for which 
genes are exclusive to which categories (Vencio et al. 2006).  Gene 
Set Enrichment Analysis (GSEA) uses the complete distribution of 
differential expressions of all genes, without categorizing them 
into differentially and non-differentially expressed, to identify 
enriched gene sets  (Subramanian et al. 2005).  sigPathway(Tian et 
al. 2005) determines statistical significance of enrichment by com-
paring the sum of association measures (standard t-statistics) be-
tween genes and phenotype to the distribution of sums under the 
null hypothesis of no association.. A more recent method, ProbCD, 
has the unique feature of allowing continuous probabilities both for 
gene significance (differential expression) and category assign-
ment, based on uncertainty (Vencio and Schmulevich 2007).  This 
method calculates an enrichment statistic based on a k x 2 contin-
gency table with the Goodman-Kruskal gamma, and assesses sig-
nificance by comparison to a null distribution estimated by permu-
tations.  Newton et al. introduced a random-sets statistical frame-
work which facilitates a unified treatment of methods based on 
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significance counts and methods based on complete distributions 
of any quantitative gene-level score (Newton et al. 2007). The 
random-sets method detects enriched gene sets by comparing the 
summary score for the gene list to the distribution of scores for 
randomly selected sets of the same size. The method is imple-
mented in the allez R-package.  

Table 1. Methods included in comparisons 

Method Main statistical test Input data User choice 
for DEG 
test? 

  LRpath Logistic regression-
likelihood ratio 

Significance levels for all 
genes 

Any 

  Fisher’s 
exact 

Fisher’s exact test Counts of significant and non-
significant genes 

Any 

  GSEA Weighted Kolmo-
gorov-Smirnov 

Normalized intensities for all 
genes and all arrays 

No 

ProbCD  Goodman-Kruskal 
gamma 

Significance levels for all 
genes 

Any 

BayGO Bayesian 3 X 2 
contingency table 

Counts of significant and non-
significant genes 

Any 

SigPathway t-test (2 hypotheses 
tested) 

Normalized intensities for all 
genes and all arrays, or 
measures of association 

t-test or 
Wilcoxon
rank 

Random-
sets 

score test Significance levels for all 
genes 

Any 

 

 
Here we introduce and validate a new logistic regression-based 

method, LRpath, that functionally relates gene set membership 
status (dependent variable) to the statistical significance of genes’ 
differential expression (independent variable). The basic question 
asked by LRpath is, “Does the odds of a gene belonging to a pre-
defined gene set increase as the significance of differential expres-
sion increases?”  Logistic regression is a natural extension of the 
Chi-squared test, allowing the significance values to remain on a 
continuous scale and not requiring the use of significance thresh-
olds. We compare the sensitivity and specificity of LRpath to other 
relevant methods in identifying enriched Gene Ontologies using 
simulated and experimental microarray data. Our simulation study 
and experimental data analyses were structured so that the true 
hierarchical GO structure is preserved, thus retaining the natural 
correlations among categories.  The results from experimental data 
reinforce the simulation findings by additionally preserving the 
natural correlations among gene expression profiles of experimen-
tal microarray data.  We circumvent the problem of unknown 
“truth” in the experimental data comparisons by using two inde-
pendent datasets examining the same biological phenomenon and 
compare methods based on the reproducibility of their findings. 
Our method showed greater reproducibility in identifying enriched 
GO terms than the other tested methods.  Use of the new method is 
further demonstrated by analyzing a previously-published microar-
ray experiment comparing healthy subjects to those with idiopathic 
pulmonary fibrosis (IPF) (Pardo et al. 2005).  Results from two 
additional datasets are available as supplementary information.  

2 METHODS 

2.1 LRpath Model Details 
Suppose that for a given microarray experiment we have assigned the 

statistical significance of the comparison of interest to each gene in terms 
of p-values. Our logistic regression method proceeds as follows. For each 
category (i.e. gene set) c, the dependent variable y is defined as 1 for genes 
in c, and 0 for all other genes.  We use the significance statistics, defined as 
–log(p-values), as the explanatory variable x, although a different signifi-
cance measure could be used. If π is the proportion of genes belonging to 
the category (y=1) at a specified x value, then π / (1-π) are the correspond-
ing odds that a gene with significance x is a member of this particular cate-
gory. If the log odds value increases as x increases, then we conclude the 
category is associated with the differential expression. Logistic regression 
is used to model the log-odds of a gene belonging to the specific category 
as a linear function of the statistical significance x:  

xβα
π

π
+=⎟

⎠
⎞

⎜
⎝
⎛

−1
log

where α is the intercept, β is the slope, and both α and β are estimated from 
the data. The slope parameter, β, corresponds to the change in the log odds 
of belonging to the specific category for a unit increase in x (or ten-fold 
decrease in p-value). When β > 0 we conclude that the category of interest 
is “enriched” with differentially expressed genes (or conversely that the 
category is “depleted” if β<0).  The evidence in the data that β > 0 (or < 0) 
for a specific category is assessed by calculating the p-value for the null 
hypothesis that β = 0 against the alternative that β ≠ 0 based on the maxi-
mum likelihood parameter estimates and the Wald test. The Wald statistic, 
W, is calculated as: 

2

ˆ

ˆ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

β

β
s

W

where  is the maximun likelihood (ML) estimate for β,sβ̂ β is the standard 
error of , and the ML is estimated using the iteratively weighted least 
squares (IWLS) algorithm.  For testing β=0, W can be shown to follow a 
chi-square distribution with one degree of freedom and the p-value is calcu-
lated assuming this null distribution. The p-values from the test of each 
category c, are then adjusted for multiple testing either by controlling the 
false discovery rate (FDR) (Benjamini and Hochberg 1995; Storey and 
Tibshirani 2003), or controlling the family-wise error rate using Bon-
ferroni. Most likely enriched gene sets will be  identified based on the p-
value, or based on the odds ratio if a ranking independent of category size 
is desired.   

β̂

When multiple related comparisons are of interest (e.g. a time course or 
multiple treatments versus a control) β may be modeled as a vector (β1,…, 
βn) where each element is the slope at one time point or one treatment. In 
this case, for each gene set one could test the null hypothesis: βj – βi = 0.  
That is, a combined logistic regression may be performed to identify if a 
category is significantly more affected by one treatment than another. Al-
ternatively, one could test for each gene set the null hypothesis: β1 = β2 = 
… = βn = 0 (odds ratios =1 for all time points or dose levels) to determine 
which categories are affected by any dose level or at any time in the ex-
periment.  This type of analysis is illustrated in supplementary information.  

 

2.2 Simulation Design 
Our simulation study imitates six- and ten-slide, single-channel microar-

ray experiments with three (and five) treated samples and three (five) con-
trols. Gene expression values of DEGs were assigned to human Entrez 
Gene IDs so that the desired enrichment level of chosen categories was 
obtained, with the remaining gene expression values assigned to randomly 
chosen, unique human Entrez Gene IDs.  The Entrez Gene IDs were then 
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mapped to all of their assigned GO terms. This allowed the simulations to 
preserve the actual correlations and gene distributions existing in the struc-
ture of the GO database. All simulations were performed using 10,000 
“genes”, with 500 (5%) genes, or in one set 1000 (10%) genes, designed to 
be “differentially expressed”. The following variables were assessed in the 
simulations: 

(1) Number of differentially expressed genes, d: (500, 1000) 

(2) Distribution of true fold changes:  N(0, 4σg
2) (or Uniform([-2.5,-

0.5]U[0.5,2.5]), where σg
2 is defined below. 

(3) Number of enriched categories, e:  (2, 5) 

(4) Level of enrichment, L:  (25%, 50%, 75%, 90%) of genes in cate-
gory are differentially expressed 

(5) Number of array replicates:  (3, 5). 
 The simulations proceed as follows: 

For all 10,000 genes, g: 

(1) Simulate gene variances, σg
2, assuming equal variance among 

treatment groups, as random draws from the χ−1
(4) distribution 

(2) Without loss of generality, assume the first d genes are differen-
tially expressed 

a. Simulate actual mean log ratios, μg, as random draws 
from N(0, 4σg

2) (or Uniform([-2.5,-0.5]U[0.5,2.5]), 

b. For the remaining 10,000-d genes, set the actual 
mean log ratios, μg =0. 

(3) Simulate normalized estimated expression levels as random draws 
from N(μg,σg

2). 
(4) Randomly select e GO terms to be “enriched” 

(5) Randomly assign L% of human Entrez Gene IDs from each en-
riched GO category to differentially expressed genes. 

(6) Randomly assign unique Entrez IDs to all other gene expression 
values, including unassigned differentially expressed genes, as 
random draws from all human Entrez IDs represented in GO 

(7) For all GO terms with 10-200 genes (1761 terms), calculate sig-
nificance statistics (p-values and q-values) for each tested me-
thod. 

 
All compared methods were applied with default parameters with the 

following exceptions.  For GSEA, we permuted genes rather than samples 
for experiments with less than six replicates (as recommended for small 
experiments). For BayGO we increased the number of simulations from 
100 to 1000 for higher accuracy. For ProbCD, we defined all gene annota-
tion assignments with 100% probability. In the case of allez, we used the z-

transformed rankings of the genes based on the statistical significance as 
input. Since the random-set method allows for the use of any measure of 
differential expression, we chose z-transformed ranks as the score primarily 
due to the prominent place that rankings was given in the manuscript de-
scribing the procedure, and the fact that the z-transformed-ranks option of 
allez is stated to improve the z-score quality in the allez documentation. 
Given the underlying connection between the random-set analysis and the 
logistic regression (see results), we also directly compared the two proce-
dures using the -log(p-value) as the score for allez and using z-transformed 
ranks as the input for LRpath. 

3 RESULTS 
We performed a comparison with the methods in Table 1 using 
both simulated and experimental data. In the simulation study we 
know the truth about enriched GO terms, but the data lacks the 
natural correlation structure found in experimental data and may 
have unrealistic distributional properties. On the other hand, in the 
breast cancer microarray data, the truth is unknown, but the other 
issue is appropriately addressed. The concordant findings based on 
simulated and experimental data analyses offer strong evidence 
that our conclusions are valid and reproducible. 

3.1 Simulation Study 
We applied seven methods (Table 1) to each simulated dataset.  
For Fisher’s exact test we used five different p-value cut-off levels 
for DEGs (0.001, 0.01, 0.05, 0.10, and 0.50), and for BayGO we 
used a 0.01 cutoff. For sigPathway (NTK and NEK hypotheses) 
(Tian et al. 2005), we use the provided ranking procedure that 
combines the two hypotheses based on the sum of the two statis-
tics, but separate p-values, because combined p-values are not 
available.  All methods were performed using an R-package when 
available, or R-code downloaded from the original publication’s 
authors otherwise.  Because GSEA tests increased and decreased 
transcript levels separately, we modified the program so that the 
absolute value of the measure of change is used. The simulated 
data were first analyzed for detection of differentially expressed 
genes (DEGs) using a standard t-test for input into LRpath, 
Fisher’s exact, ProbCD, and BayGO. Results improved when a 
Bayesian moderated t-statistic (Sartor et al. 2006) was used in 
place of the t-test for testing differential expression of genes (see 
the web supplement).  
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For each simulation scenario, we simulated 30 datasets and cal-
culated  (1) the average ranks of GO terms ordered by statistical 
significance and (2) q-values of enrichment for all GO terms. We 
compared performances of different methods by comparing  the 
average log-ranking of enriched categories (Figure 1). To clarify 
the exact values plotted in Figure 1, we provide the raw data in the 
supplement (Table S1). The performance of all methods was 
strongly affected by the level of enrichment (varied between 25% 
and 90%).  

LRpath performed best overall in ranking the enriched GO terms 
as most significant. Using the performance ranks of each method 
across all simulation scenarios (based on values of Table S1), a 
Wilcoxon rank test was used to test the significance of LRpath’s 
performance over the next best methods, FE p<0.10 and FE 
p<0.05, and was found to be significant(Wilcoxon rank test p=2.2 
x 10-4, as compared to FE p<0.05, and p=1.5 x 10-4 as compared to 
FE p<0.10). The performance of Fisher’s exact test varied depend-
ing on which p-value cutoff was used to identify differentially 
expressed genes, as previously seen (Pan et al. 2005).  For most 
parameter sets, using a more relaxed cutoff of p<0.05 or 0.10 per-
formed best.  Thus for ranking enriched biological categories using 
Fisher’s exact test, one would want to apply a less stringent p-
value cutoff than would be justified for identifying individual dif-
ferentially expressed genes.  

In agreement with Newton et al’s finding that Fisher’s exact is 
more likely to outperform the corresponding averaging method 
when the level of enrichment is small, we find that at least one 
Fisher’s exact test outperforms allez for every set at the lowest 
(25%) enrichment level. Conversely, allez outperforms Fisher’s 

exact tests more often for the highest level of enrichment. The fact 
that LRpath still outperforms Fisher’s exact at the low enrichment 
levels can be attributed to its use of the –log(p-value) rather than z-
transformed rankings as input.  When the enrichment level is low, 
the –log(p-value) statistic allows a small number of highly signifi-
cant genes to drive the enrichment test, whereas the z-transformed 
rankings does not allow for such strong “outliers”.  Indeed, addi-
tional simulations using the same rankings input for LRpath as for 
allez resulted in similar poorer performance by LRpath . Con-
versely, when the default input for LRpath–(log(p-value) was used 
as input for allez, LRpath only slightly outperformed allez based 
on a Wilcoxon rank test (p=0.014) (Figure 2). 

For experiments with more statistical power, as illustrated by our 
simulations of a 10-slide experiment, using a stricter p-value cutoff 
for DEG detection may offer better performance.  Indeed, using 
p<0.01 performed better than p<0.05 in ranking GO terms for two  
of the four parameter sets in the 10-slide experiment, and the per-
formance of the p<0.001 cutoff increased substantially compared 
to the smaller simulated experiment.  As expected, simulating 
higher actual fold changes for DEGs resulted in overall better per-
formance of all methods.   

Simulating twice as many DEGs or increasing the number of en-
riched categories from 2 to 5 had little effect on the differences in 
methods’ performance, although there is some indication of a 
slight overall decrease in performance among methods. Of the 
other methods tested, BayGO, allez, and Fisher’s exact with the 
p<0.05, 0.01, or 0.10 cutoff offered the next best performance, 
depending on parameter values.  Because p-values produced by 
different methods are not directly comparable, we focused on the 

Fig. 1  Simulation Results: Ability to rank enriched GO terms Log10-rankings of enriched GO terms were calculated to compare the ability of meth-
ods to correctly rank these categories at the top of the list.  Thus, lower ranking scores are better.  Methods are LRpath (LR), Fisher’s exact (FE) with the 
following 3 criteria for detecting DEGs (p<0.001, p<0.01, p<0.05, p<0.10, and p<0.50), BayGO, sigPathway (sigPath), allez, and ProbCD.  Initial 4 
parameter sets (A) used 90, 75, 50, and 25% enrichment with DEGs, 500 total DEGs, normally distributed fold changes, 2 enriched categories, and 3 
replicates for treated and control groups.  Subsequent groups had the following differences: (B) 1000 DEGs, (C) DEGs with higher fold changes, (D) 5 
enriched GO terms, (E) 5 replicates .  Data shown are averages from 30 simulation runs for each parameter set. LRpath performed significantly better 
than the next best methods (p=2.2 x 10-4 compared to FE p<0.05 and p=1.5 x 10-4 compared to FE p<0.10) using a Wilcoxon rank test. 

4 



LRpath: A logistic regression approach for identifying enriched biological groups in gene expression data 

rankings of enriched gene sets.  However, we also offer a compari-
son of the methods’ q-values for enriched GO terms as supplemen-
tary material (Figure S1), as well as a measure of bias in the p-
values under the hypothesis of no association betweenGO terms 
and differential expression (Figure S2). 
 

3.2 Comparison of results from two breast cancer 
microarray experiments 

We also compared the performance of different methods based on 
the reproducibility of their findings in two breast cancer datasets. 
A frequently recurring concern with microarray data is its gener-
alizability. A better method is expected to demonstrate a higher 
consistency between results obtained from independent experi-
ments studying the same biological phenomenon, despite technical 
differences.  To this end, we examined the consistency of each 
method’s results between two datasets. The first dataset (Sotiriou 
et al. 2006) consists of human breast carcinoma samples. For this 
analysis, we used samples from non-treated patients with positive 
ER status and with histological grades 1 (29 samples) or 3 (12 
samples).  The second dataset consisted of the independent sam-
ples with positive ER status from another primary breast tumor 
study, where each sample was also identified as histological tumor 
grade 1 (39 samples), or 3 (28 samples) using the Elston-Ellis 
grading system (Miller et al. 2005). 

Preprocessed data was downloaded from the NCBI Gene Ex-
pression Omnibus (GEO) public repository (GEO accession 
GSE2990), and we separately analyzed each dataset for GO cate-
gories enriched with genes differentially expressed between the 
histologic grade 1 and 3 samples.  Results from standard t-tests 
were used for input into LRpath, BayGO, and Fisher’s exact.  In 
the first dataset, ten GO terms were identified with p < 0.005 by at 
least five of the seven methods: cell division, M phase, mitosis, M 
phase of mitotic cell cycle, spindle organization and biogenesis, 
regulation of mitosis, condensed chromosome, mitotic checkpoint, 

cell cycle checkpoint, and regulation of progression through cell 

cycle. 

Fig.3. Concordance of methods between two independent Breast 
Cancer datasets Reproducibility of the methods (LRpath, Fisher’s 
exact (FE) with cutoffs of 0.50, 0.10, 0.01 and 0.001 for DEGs, Bay-
GO, GSEA, sigPathway, allez, and ProbCD) was tested by measuring 
the consistency of results across two datasets, both comparing grade 3 
to grade 1 tumors.  (A) Correlation between datasets for each me-
thod. As a measure of significance, the –log(p-values) of GO term 
enrichment were calculated for each method and dataset separately, and 
the Pearson correlation coefficients between datasets were calculated.  
(B) Overlapping enriched GO terms by rank. Ranked lists of GO 
terms were generated for each method and each dataset separately. The 
number of overlapping GO terms was calculated between datasets for 
each method for increasing length of ranked lists. 

Fig. 2. Effect of input statistics on LRpath and allez. Graphed is 
the average increase in log-rank of enriched GO terms relative to 
LRpath with –log(p-values) as input, which ranked best. LRpath and 
allez produced very similar results when given the same input. *p<0.05 
from Wilcoxon rank test between allez and LRpath using –log(p).  
**p<0.05 from Wilcoxon rank test between allez and LRpath using z-
transformed gene ranks.  

For each method, concordance was measured in two ways: (1) 
the degree of correlation in significance of GO terms between the 
two datasets (Figure 3a), and (2) the number of overlapping GO 
terms between the two datasets among top ranked lists (Figure 3b). 
The results shown in Figure 3 indicate that LRpath has the greatest 
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consistency between datasets.  Consistent with the other analyses, 
the concordance of Fisher’s exact test between datasets depended 
on the criteria for DEG detection, with p<0.01 and p<0.10 criteria 
resulting in greater concordance than that of p<0.50 or p<0.001.  
Examining the number of overlapping GO terms in the top ranked 
lists of each method, overall we see LRpath performing best, allez 
second best, and probCD third (although Fisher’s exact with 
p<0.01 performs as well for the first 20 rankings), Fisher’s exact 
with the p<0.001 or p<0.50 criteria for DEGs performed worst, and 
the other methods’ performances relatively indistinguishable from 
each other.  All methods except Fisher’s exact with p<0.001 per-
formed markedly better than would be expected by chance, indicat-
ing a true signal in answering the question as to what gene sets are 
enriched between histological grade 3 vs. grade 1 primary breast 
cancer tumors.  The overlapping GO terms among the top 50 
ranked for LRpath are listed in(Table S3).  Notably, this list of 28 
GO terms included all ten of the GO terms identified by at least 
five methods in the first dataset, and consistent with the findings of 
(Sotiriou et al. 2006), were mainly related to cell cycle progres-
sion. We again looked separately at the performance of the ran-
dom-set procedure with –log(p-value) as input and results were 
very similar as in the simulation study. The correlation coefficient 
increased, when compared to using transformed ranks (from 0.60 
to 0.64), but still remained below LRpath’s correlation. On the 
other hand, there was no difference between LRpath and allez 
when plotting overlapping GO terms by rank (Supplemental Figure 
4). 

3.3 Application: Results from Human IPF dataset 
 Using a human idiopathic pulmonary fibrosis study (Pardo et al. 
2005), we demonstrate the ability of LRpath to implicate important 
biological pathways and functional groupings missed by the most 
commonly used analytical approach. The 11 normal and 13 IPF 
lung tissue samples were analyzed for differentially expressed 
genes using a standard t-test or an empirical Bayes test, IBMT 
(Sartor et al. 2006), and then tested for enriched gene sets using 
LRpath and Fisher’s exact test. Six KEGG pathways were signifi-
cant at the FDR < 0.05 level using LRpath with IBMT, including 
altered “Cell cycle”, decreased “Blood vessel development”, and a 
decrease in “Cytokine-cytokine receptor interaction” (Table S4). 
Fisher’s exact test with IBMT resulted in no significant pathway 
when using a p<0.01 cutoff for DEGs and only 1 (Complement and 
coagulation cascades) when using a p<0.05 cutoff.  No enriched 
KEGG pathways were identified with the t-test in conjunction with 
Fisher’s exact. The significant KEGG pathways identified with 
LRpath involves several findings consistent with what has been 
reported in human IPF, and a thorough discussion of these findings 
is provided as supplemental information.  

DISCUSSION 
Identifying predefined gene sets enriched with differentially ex-
pressed genes has become a routine part of microarray analysis, 
and provides investigators with greater biological insight than sig-
nificant gene lists alone. Our aim was to develop a method that 1) 
does not require the choice of a significance cutoff, 2) allows the 
investigator to choose different methods for detecting differentially 
expressed genes, 3) provides unbiased assessment of statistical 
significance, and 4) similar to Fisher’s exact test has an intuitive 

interpretation in terms of odds ratios.  The method we developed, 
LRpath, uses logistic regression to model the relationship between 
gene set membership and differential expression in terms of odds 
ratios of enrichment. The basic question addressed by LRpath is 
whether the odds of a gene belonging to a predefined gene set in-
creases as the significance of differential expression increases. 
Unlike the Chi-squared type of methods, our model allows the data 
resulting from tests of differential expression to remain on a con-
tinuous scale.  This removes the need to choose a significance 
cutoff, and has the advantage of taking into account the distribu-
tion of significance levels for genes not belonging to, as well as 
belonging to, the gene set of interest. If expression of genes from a 
specific biological pathway is affected in the experiment, we 
would expect that genes with significant p-values are more likely 
to be members of this pathway than genes with less significant p-
values, although we may not know exactly where, or want, to draw 
a line between “significant” and “non-significant” differential ex-
pressions.  
Led by the communication from Michael Newton about underlying 
similarities between the logistic regression and the random-sets 
framework, we further examined the relationship between the two 
methods. Our results indicate that the differences between the two 
procedures, when using the same score are very small. Actually, it 
can be  shown that the random-sets method of allez is nearly iden-
tical (see supplemental material) to performing logistic regression 
and using the score test for significance, which is asymptotically 
equivalent to the statistical test used by LRpath. Thus, small ob-
served differences could be due to small differences in the per-
formance of the score and the Wald tests in this context of logistic 
regression.  Regardless of which of the two procedures are used, 
one seems to be better off using –log(p-values) instead of using the 
z-scores.  
  We performed an in-depth comparison with other relevant meth-
ods using both simulated and experimental data. In the simulation 
study we know the exact truth about enriched GO terms, but the 
simulated data lacks the natural correlation structure found in ex-
perimental data and may have unrealistic distributional properties. 
On the other hand, the exact truth is unknown in the breast cancer 
microarray data we analyzed, but the other issues are appropriately 
addressed. This comparison of independent experimental datasets 
is both inherently free of bias, and addresses the question of which 
methods provide the most reproducible results.  The observed con-
cordance of the results in these different analyses offers strong 
evidence that our conclusions are valid and reproducible.  Results 
of our simulation study indicate that, as expected, the power to 
detect enriched GO terms depends greatly on the level of enrich-
ment, and to a lesser extent on several other parameters tested.  For 
Fisher’s exact test, we conclude that both the significance cutoff 
used to define DEGs and the test used to detect DEGs (data not 
shown) affect the results of gene enrichment testing.  Overall, 
LRpath performed better than the other methods tested based on all 
criteria.  

Using the concordance between the two independent larger sam-
ple breast cancer datasets, we showed that LRpath again resulted in 
the best performance.  The results from these analyses were gener-
ally in agreement with results of the simulation study. In both cas-
es, allez and ProbCD performed favorably, and Fisher’s exact with 
a fairly relaxed cutoff also performed well. ProbCD may offer an 
additional advantage in situations when the gene set assignments 
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are probabilistic.Newton et al. showed that selection methods (e.g. 
Fisher’s exact test) and averaging methods (e.g. allez) each have a 
“domain of superiority” in the space of possible enrichment prob-
lems.  In general, averaging methods are superior when the differ-
ential expression effects are relatively small and are most advanta-
geous when the enrichment level is also high.  Based on our results 
for the breast cancer experiments, it seem likely that these criteria 
held true, and that the disadvantage of the averaging method can be 
at least partially offset by using an input measure, such as –log(p-
value), that allows a smaller number of highly differentially ex-
pressed genes to help drive the enrichment process.  Further com-
parisons will be necessary to assess the performance of other gene 
score measurements as input, such as log-fold change or t-
statistics, and to what extent their performances are dataset de-
pendent. 

Using the breast cancer (Miller et al. 2005; Sotiriou et al. 2006) 
and IPF (Pardo et al. 2005) datasets, we also uncovered novel 
insights into the biological mechanisms of these diseases.  In breast 
cancer, we demonstrate the use of LRpath and other methods to 
detect consistent GO terms distinguishing histological grade 3 and 
grade 1 primary breast tumor samples from two independent data-
sets. In IPF, we demonstrate the use of LRpath to detect over-
represented biological categories not presented in the original 
analysis and which would not have been identified by Fisher’s 
exact test (i.e. identifying additional pathways including altered 
“Cell cycle”, decreased “Blood vessel development”, and a de-
crease in “Cytokine-cytokine receptor interaction”.) 

 We have implemented LRpath as an R function (Ihaka and Gen-
tlemen 1996) (supplemental data) which can be downloaded along 
with all other supplemental material from our supporting website 
http://eh3.uc.edu/lrpath. The function is designed to automatically 
test the categories of Gene Ontology terms or KEGG Pathways, 
but can be modified for use with user-defined categories. Current 
implementation accepts as input significance statistics of the inves-
tigator’s choice and allows for duplicate and missing gene identifi-
ers.   
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