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ABSTRACT
Motivation: The biologic significance of results obtained
through cluster analyses of gene expression data gener-
ated in microarray experiments have been demonstrated
in many studies. In this article we focus on the develop-
ment of a clustering procedure based on the concept of
Bayesian model-averaging and a precise statistical model
of expression data.
Results: We developed a clustering procedure based
on the Bayesian infinite mixture model and applied it to
clustering gene expression profiles. Clusters of genes with
similar expression patterns are identified from the posterior
distribution of clusterings defined implicitly by the stochas-
tic data-generation model. The posterior distribution of
clusterings is estimated by a Gibbs sampler. We summa-
rized the posterior distribution of clusterings by calculating
posterior pairwise probabilities of co-expression and used
the complete linkage principle to create clusters. This
approach has several advantages over usual clustering
procedures. The analysis allows for incorporation of a
reasonable probabilistic model for generating data. The
method does not require specifying the number of clusters
and resulting optimal clustering is obtained by averaging
over models with all possible numbers of clusters. Expres-
sion profiles that are not similar to any other profile are
automatically detected, the method incorporates experi-
mental replicates, and it can be extended to accommo-
date missing data. This approach represents a qualitative
shift in the model-based cluster analysis of expression
data because it allows for incorporation of uncertainties
involved in the model selection in the final assessment
of confidence in similarities of expression profiles. We
also demonstrated the importance of incorporating the
information on experimental variability into the clustering
model.
Availability: The MS WindowsTM based program imple-
menting the Gibbs sampler and supplemental material

∗To whom correspondence should be addressed.

is available at http://homepages.uc.edu/∼medvedm/
BioinformaticsSupplement.htm
Contact: medvedm@email.uc.edu

INTRODUCTION
The ability of the DNA microarray technology to produce
expression data on a large number of genes in a parallel
fashion has resulted in new approaches to identifying in-
dividual genes as well as whole pathways involved in per-
forming different biologic functions. One commonly used
approach in making conclusions from microarray data is
to identify groups of genes with similar expression pat-
terns across different experimental conditions through a
cluster analysis (D’haeseleer et al., 2000). The biologic
significance of results of such analyses has been demon-
strated in numerous studies. Various traditional cluster-
ing procedures, ranging from simple agglomerative hierar-
chical methods (Eisen et al., 1998) to optimization-based
global procedures (Tavazoie et al., 1999) and self organiz-
ing maps (Tamayo et al., 1999), to mention a few, have
been applied to clustering gene expression profiles (in this
paper we use the term profile to represent the set of ob-
served expression values for a gene across several experi-
ments). In identifying patterns of expression, such proce-
dures depend on either a visual identification of patterns
(hierarchical clustering) in a color-coded display or on the
correct specification of the number of patterns present in
data prior to the analysis (k-means and self organizing
maps).

Expression data generated by DNA arrays incorporates
different sources of variability present in the process of
obtaining fluorescence intensity measurements. Choosing
a statistically optimal experimental design and the appro-
priate statistical analysis of produced data is increasingly
important aspect of such experiments (Kerr and Churchill,
2001; Baldi and Long, 2001). In the situation when sta-
tistically significant differential expression needs to be
detected, various modifications of traditional statistical
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approaches have been proposed (Kerr et al., 2000; Newton
et al., 2001; Ideker et al., 2000; Wolfinger et al., 2001;
Rocke and Dubin, 2001; Lonnstedt and Speed, 2001).
A common goal of all these approaches is the precise
treatment of different sources of variability resulting in
precise estimates of differential expression and their sta-
tistical significance. In this article we suggest Bayesian
hierarchical infinite mixture model as a general framework
for incorporating the same level of precision in the cluster
analysis of gene expression profiles.

Generally, in a model-based approach to clustering, the
probability distribution of observed data is approximated
by a statistical model. Parameters in such a model de-
fine clusters of similar observations. The cluster analysis
is performed by estimating these parameters from the data.
In a Gaussian mixture model approach, similar individ-
ual profiles are assumed to have been generated by the
common underlying ‘pattern’ represented by a multivari-
ate Gaussian random variable. The confidence in obtained
patterns and the confidence in individual assignments to
particular clusters are assessed by estimating the confi-
dence in corresponding parameter estimates. Recently, a
Gaussian finite mixture model (McLachlan and Basford,
1987) based approach to clustering has been used to clus-
ter expression profiles (Yeung et al., 2001a). Assuming
that the number of mixture components is correctly spec-
ified, this approach offers reliable estimates of confidence
in assigning individual profiles to particular clusters. In
the situation where the number of clusters is not known,
this approach relies on ones ability to identify the correct
number of mixture components generating the data. All
conclusions are then made assuming that the correct num-
ber of cluster is known. Consequently, estimates of the
model parameters do not take into account the uncertainty
in choosing the correct number of clusters.

We developed a statistical procedure based on the
Bayesian infinite mixture (also called the Dirichlet process
mixture) model (Ferguson, 1973; Neal, 2000; Rasmussen,
2000) in which conclusions about the probability that a set
of gene expression profiles is generated by the same pat-
tern are based on the posterior probability distribution of
clusterings given the data. In addition to generating groups
of similar expression profiles at a specified confidence, it
identifies outlying expression profiles that are not similar
to any other profile in the data set. In contrast to the finite
mixture approach, this model does not require specifying
the number of mixture components, and the obtained clus-
tering is a result of averaging over all possible numbers
of mixture components. Consequently, the uncertainty
about the true number of components is incorporated in
the uncertainties about the obtained clusters. Advantages
of such an approach over the finite mixture approach that
relies on the specification of the ‘correct’ number of mix-
ture components are demonstrated by a direct comparison

of the two approaches. We also extended the model to
incorporate experimental replicates. In a simulation study,
we demonstrated that such an extension is beneficial when
the expression levels of different genes are measured with
different precision.

STATISTICAL MODEL
Suppose that T gene expression profiles were observed
across M experimental conditions. If xim is the expression
level of the i th gene for the mth experimental condition,
then xi = (xi1, xi2, . . . , xi M ) denotes the complete ex-
pression profile for the i th gene. Each gene expression pro-
file can be viewed as being generated by one out of Q dif-
ferent underlying expression patterns. Expression profiles
generated by the same pattern form a cluster of similar
expression profiles. If ci is the classification variable indi-
cating the pattern that generates the i th expression profile
(ci = j means that the i th expression profile was gener-
ated by the j th pattern), then a ‘clustering’ is defined by
a set of classification variables for all expression profiles
c = (c1, c2, . . . , cT ). Values of classification variables are
meaningful only to the extend that all observed expression
profiles having the same value for their classification vari-
able were generated by the same pattern and form a cluster.
In our probabilistic model, underlying patterns generating
clusters of expression profiles are represented by multi-
variate Gaussian random variables. That is, profiles clus-
tering together are assumed to be a random sample from
the same multivariate Gaussian random variable.

The following hierarchical model defines the probability
distribution generating observed expression profiles. This
model implicitly defines the posterior distribution of
the classification set c and consequently the number of
clusters (patterns) in the data, Q.

Level 1: The distribution of the data given the parameters
of underlying patterns [(µ1, σ

2
1 ), . . . , (µQ, σ 2

Q)], and the
classification variables c is given by:

p(xi |ci = j, µ1, . . . ,µQ, σi , . . . , σQ) = fN (x j |µ j , σ
2
j I)
(I)

where p(x |θ ) denotes the marginal probability distribution
function of x given parameters θ ; and fN (.|µ, σ 2I) is the
probability density function of a multivariate Gaussian
random variable with mean µ and variance–covariance
matrix σ 2I and I denotes the identity matrix.

Level 2: Prior distributions for [(µ1, σ
2
1 ), . . . , (µQ, σ 2

Q)]
and (c1, . . . , cT ), given hyperparameters λ, r, β and w are
given by:

p(ci |π1, . . . , πQ) =
Q∏

j=1

π
I(ci = j)
j

p(µ j |λ, r) = fN (µ j |λ, r−1I)
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p(σ−2
j |β, w) = fG

(
σ−2

j

∣∣∣∣β2 ,
βw

2

)
(II)

where fG(.|θ, τ ) is the probability density function of a
Gamma random variable with the shape parameter θ and
the scale parameter τ and I(ci = j) = 1 whenever ci = j
and it is zero otherwise.

Level 3: Prior distributions for (π1, . . . , πQ) and hyperpa-
rameters λ, r, β and w are given by:

p(π1, . . . , πQ |α, Q) = fD

(
π1, . . . , πQ

∣∣∣∣ α

Q
, . . . ,

α

Q

)

p(w|σ 2
x ) = fG

(
w

∣∣∣∣1

2
,
σ−2

x

2

)

p(β) = fG

(
β

∣∣∣∣1

2
,

1

2

)
(III)

p(r |σ 2
x ) = fG

(
r

∣∣∣∣1

2
,
σ 2

x

2

)

p(λ|µx , σ
2
x ) = fN (λ|µx , σ

2
x I) (IV)

where fD(·|θ1, . . . , θQ) represents the probability density
function of a Dirichlet random variable with parameters
(θ1, . . . , θQ). µx is the average of all profiles analyzed and
σ 2

x is the average of gene-specific sample variances based
on all profiles analyzed (see the appendix), and α was set
to be equal to 1.

Dependences in this model can be represented using the
usual directed acyclic graph (DAG) representation and the
directed Markov assumption (Cowell et al., 1999)

X

C M

α

λ λ

Σ

Π r w  

� = (π1, . . . , π Q)

C = (c1, . . . , cT )

X = (x1, . . . , xT )

M = (µ1, . . . , µQ)

� = (σ 2
1 , . . . , σ 2

Q)

As Q approaches infinity, the model above is equiva-
lent to the corresponding Dirichlet process prior mixture
model (Neal, 2000). This model is similar to the models
described by Rasmussen (2000) and Escobar and West
(1995). Previously, we used a similar approach to model
multinomial data (Medvedovic, 2000). This hierarchical

model can be easily generalized to include more general
covariance structures, to accommodate experimental repli-
cates, more flexible or more specific priors, missing data,
etc.

The cluster analysis based on this model proceeds by
approximating the joint posterior distribution of classifi-
cation vectors given data, p(c|x1, . . . , xT ). This distribu-
tion is implicitly specified by this hierarchical model but
cannot be written in the closed form. However, it can be
shown (Neal, 2000) that the posterior marginal distribution
of classification variables given all model parameters and
the data, when Q approaches infinity, is fully specified by
following two equations:

p(ci = j |c−i , xi ,µ j , σ
2
j )

= b
n−i, j

T − 1 + α
fN (xi |µ j , σ

2
j I) (V)

p(ci �= c j , j �= i |c−i , xi , µx , σ
2
x )

= b
α

T − 1 + α

∫
fN (xi |µ j , σ

2
j I)

×p(µ j , σ
2
j |λ, r−1)dµ j dσ 2

j (VI)

where, n−i,c is the number of expression profiles classified
in c, not counting the ith profile, c−i is the classification
vector for all except the i th profile and b is just a normal-
izing constant ensuring that all classification probabilities
add up to one. Posterior conditional distributions for other
model parameters are given in the Appendix. Having all
complete conditional distributions specified, we can em-
ploy a Gibbs sampler to estimate joint posterior distribu-
tion of all model parameters. It is important to note that
although the number of mixture components is technically
assumed to be infinite, the number of nonempty compo-
nents is finite and ranges between 1 and T .

While the above expression for the marginal probability
of classification variables could be somewhat simplified, a
closed form expression for the (unconditional) probability
for the classification variables is not possible in light of
the (non-conjugate) form of the priors we have chosen for
µ j s and σ j s. In the current set-up, we did not find any
problems with mixing aspects of the Gibbs sampler, or the
convergence. However, with the use of a conjugate prior
and the resulting simplification, one may obtain a more
efficient Gibbs sampler.

Prior knowledge was only used in the selection of the
Dirichlet process precision parameter α. In the cell cycle
data analysis, this parameter was set to 1 representing
the prior belief that six to seven clusters are expected
to transpire (Escobar, 1994). The prior belief about the
number of clusters is based on the fact that we expected
to see 6 different clusters related to different cell cycle
phases (Cho et al., 1998) and one cluster to allow for genes
not related to cell cycle. In the sensitivity analysis, we
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demonstrated that the posterior distribution of clusterings
was not sensitive to doubling and halving of α which
is approximately equivalent to doubling and halving the
prior expected number of mixture components (Escobar,
1994). An alternative approach to specifying the prior
belief on the number of clusters could be to specify a prior
distribution for α and treat it like all other parameters in
the model (Escobar and West, 1995; Rasmussen, 2000).
All other hyper-parameters in the model are given prior
distributions that are centered around the overall profiles
mean and standard deviation. This, we believe, is a
reasonable ‘default’ choice in the absence of any specific
prior information about the cluster locations.

EXPERIMENTAL REPLICATES MODEL
When the signal in the data is drowned in the experimental
variability, the most obvious way to improve the signal
to noise ratio is to perform experimental replicates. The
cluster analysis of such data can be performed by first
averaging gene expression measurements observed at dif-
ferent experimental replicates and applying an usual clus-
tering procedure. Since the standard deviation of such av-
erage expression levels will decrease with the square root
of the number of replicates, it is likely that weaker asso-
ciations will be detected than in the case when a single
replicate is performed. However, such an approach is not
using all information present in such data. The informa-
tion on the variability between experimental replicates is
discarded and only the information about the mean ex-
pression level is utilized. In the situation when experimen-
tal variability varies from gene to gene, such information
can be crucial for the proper assessment of confidence in
our final clustering results. On the other hand, it is a well
documented phenomenon that log-transformed expression
measurements of low-expressed genes vary more than ex-
pression measurements of highly expressed genes. Bag-
gerly et al. (2001) presented a probabilistic model of hy-
bridization dynamics that explains this fact. Furthermore,
it has been indicated that expression levels of some genes
might be more variable than others (Hughes et al., 2000).
In the context of the mixture model based approach, exper-
imental replicates and different between—replicates vari-
ability can be accommodated by modifying Level 1 of our
hierarchical model (I–IV):

p(xik | yi , ψi ) = fN (xik | yi , ψ
2
i I),

p(yi | ci = j, µ j , σ j ) = fN (yi | µ j , σ
2
j I). (VII)

k = 1, . . . , G, i = 1, . . . , T, j = 1, . . . , Q

In this new formulation, xik represents the expression
profile in the kth replicate for the i th gene and yi is the
mean expression profile for the i th gene. ψ2

i represents
the between replicates variance for the i th gene which

is assumed to be homogeneous across all experimental
conditions. After integrating out the mean expression
profiles for individual genes (yi s), the joint probability
distribution of all observations for a single gene is given
by

p(xi1, . . . , xiG | ci = j, µ j , σ
2
j , ψi ) =∏

k

fN

(
xi• | µ j ,

(
σ 2

j + ψ2
i

G

)
I
)

i = 1, . . . , T,

j = 1, . . . , Q; x̄i• =
∑

k xik

G
. (VIII)

Prior distribution for the within profile variance ψ2
i and

conditional posterior distributions for parameters in this
model are also given in the Appendix.

COMPUTING POSTERIOR PROBABILITIES
AND CLUSTER FORMATION
Gibbs sampler
The Gibbs sampler (Gelfand and Smith, 1990) is a general
procedure for sampling observations from a multivariate
distribution. It proceeds by iteratively drawing observa-
tions from complete conditional distributions of all com-
ponents. Under mild conditions, the distribution of gener-
ated multivariate observations converges to the target mul-
tivariate distribution. The Gibbs sampler for generating
a sequence of clusterings c1, c2, c3, . . . , cS proceeds as
follows

Initialization phase: The algorithm is started by assum-
ing that all profiles are clustered together. That is c0

is initialized as:

c0
1 = c0

2 = · · · = c0
T = 1.

Consequently, Q0 is set to one. Corresponding
pattern parameters µ1 and σ 2

1 are generated as
random samples from their prior distribution.

Iterations: Given parameters after the kth step
(ck , Qk, µ1, . . . , µQk, σ1, . . . , σk), the (k + 1)th set
of parameters is generated by first updating classi-
fication variables, that is drawing ck+1 according to
their posterior conditional distributions given by (V)
and (VI). This also determines the value of Qk+1.
New µs and σ 2s, as well as hyperparameters λ, r, w,
and β are then generated according to their posterior
conditional distributions (Appendix). Whenever the
number of profiles in a cluster falls to zero, the
cluster is removed from the list. A new cluster is
created whenever a ci �= c j for all i �= j is selected.
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It can be shown (Neal, 2000) that this algorithm, in
the limit, generates clusterings from the desired posterior
distribution of clusterings. Therefore, it can be assumed
that the empirical distribution of generated clusterings cB ,
cB+1, . . ., after B ‘burn-in’ samples, approximates the
true posterior distribution of clusterings. Groups of genes
that had common assignments in a large proportion of
generated clusterings are likely to have been generated
by the same underlying pattern. That is, the proportion
of clusterings in which a group of genes had common
assignments approximates the probability that they are
generated by the same underlying pattern. In addition to
the posterior distribution of clusterings averaged over all
possible number of clusters, the results of this sampling
procedure enable us to estimate the posterior distribution
of the number of clusters present in the data.

Cluster Formation
Given the sequence of clusterings (cB, cB+1, . . . , cS)

generated by the Gibbs sampler after B ‘burn-in’ cycles,
pair-wise probabilities for two genes to be generated by
the same pattern are estimated as:

Pi j = # of samples after ‘burn-in’ for which ci = c j

S − B

Using these probabilities as a similarity measures, pair-
wise ‘distances’ are created as

Di j = 1 − Pi j .

Based on these distances, clusters of similar expression
profiles are created by the complete linkage approach
(Everitt, 1993) utilizing the Proc Cluster and Proc Tree
of the SAS c© statistical software package (1999). It is
important to notice that using the posterior pairwise prob-
abilities and the complete linkage approach are just one
of many possible approaches to processing the posterior
distribution of clusterings generated by the Gibbs sampler.
An alternative approach to identifying the optimal cluster-
ing could be to identify the most probable clustering using
the traditional maximum a posteriori probability (MAP)
approach. That is, identifying the clustering that occurred
more times in the Gibbs sampler generated sequence
than any other clustering. The problem with that type
of approach is that many different clusterings have a very
similar yet very small posterior probability. Choosing the
‘best’ out of a slew of very similar clusterings without
summarizing the other almost equally probable alterna-
tives would likely offer an incomplete picture about the
observed distribution of clusterings. Other approaches to
summarizing the posterior distribution of clusterings are
complicated by the complex nature of the clustering space.
Finding an optimal approach to summarizing the posterior
distribution of clusterings is a challenging task that needs
further improvements.

DATA ANALYSIS
Yeast cell cycle data
The utility of this procedure is illustrated by the anal-
ysis of the cell-cycle data described and analyzed by
Cho et al. (1998). This data set has been routinely used
to demonstrate effectiveness of various clustering ap-
proaches (Tamayo et al., 1999; Yeung et al., 2001a,b;
Tavazoie et al., 1999; Lukashin and Fuchs, 2001) The
complete data set was downloaded from http://genomics.
stanford.edu/. Data was processed in a similar fashion as
described by (Tamayo et al., 1999). 893 genes that showed
significant variation in both cell cycles were identified.
Data was log-transformed and normalized separately for
each cell cycle. Clusters of similar expression profiles
were identified based on 100 000 Gibbs sampler generated
clusterings after 100 000 ‘burn-in’ cycles. The distribu-
tion of the posterior pairwise distances is shown in the
Figure 1a. Approximately 75% of all posterior pairwise
distances were equal to 1. In other words, the majority of
posterior probabilities of two profiles being generated by
the same underlying Gaussian distribution were equal to
zero.

Before we created clusters of similar profiles, we
removed ‘outlying’ profiles that were defined to be those
profiles for which all posterior pairwise probabilities were
less than 0.5. Thirty ‘outlying’ profiles were identified and
removed from the analysis (the list and the plot are given
at the supporting web page). Clusters were generated by
separating profiles in groups with the maximum possible
complete linkage distance. That is, for any pair of clusters
formed, there was at least one profile in the first cluster
that had a zero posterior pairwise probability with at
least one profile in the second cluster. Twelve clusters in
the Figure 2 with total of 302 expression profiles were
selected, from the total of 43 clusters generated, based
on their periodicity. Additional five outlying profiles were
identified separately as correlating with the cell-cycle
stages (see additional material). These profiles represent
five groups of cell cycle related genes identified by both
Cho et al. (1998) and Tamayo et al. (1999). Further
examination of the profiles identified in our analysis
reveals that out of 389 genes identified by Cho et al., 1998
as peaking at specific portion of the cell cycle, 251 also
satisfied our selection criteria. Out of these 251 genes,
201 were identified by our analysis to be associated with
cell-cycle events. An additional nine genes out of 50 that
were not identified by our analysis showed a significant
association with genes in Cluster 43 (see supplemental
material), meaning that the average pairwise posterior
probability with genes in this cluster were greater than
0.1. Two other genes from this group had a significant
association with one of the 12 clusters in Figure 1.
Although Cluster 43 does exhibit a cell-cycle associated
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Fig. 1. (a) The distribution of posterior pairwise distances. The vertical line represents the maximum posterior distance observed by analyzing
the bootstrapped data set. (b) The distribution of posterior pairwise distances observed by analyzing the bootstrapped data set. (c) The
distribution of pairwise Eucledian distances. The vertical line denotes the minimum pairwise Euclidian distance in the bootstrapped data set.
(d) The distribution of pairwise Euclidian distances in the bootstrapped data set.
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Fig. 2. Twelve Cell-cycle associated clusters out of total 43 clusters identified.
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Fig. 3. Mixing properties of the Gibbs sampler. (a) The path of the difference in the number of clusters in 200 000 generated samples for two
independent runs of the Gibbs sampler. The first Gibbs sampler was initialized by assuming that each profile was generated by a separate
mixture component and the second Gibbs sampler was initialized with the number of mixture components set to 1. (b) Same as (a) except
only first 1000 are shown. (c) Scatter plot of posterior pairwise probabilities for these two independent runs of the Gibbs sampler.

behavior, due to the large variability, it was not selected
as being cell-cycle related. By adding this cluster, the
number of genes being implied as cell-cycle related would
increase to a total of 355. While visual inspection of other
generated clusters reveal obvious similarities between
expression profiles, they do not seem to be correlated with
cell-cycle events. Plots of all 43 clusters can be viewed
at the supporting web page. By a closer examination of
106 genes that were identified by our analysis but not by
the initial examination performed by Cho et al. (1998),
we established that majority of them are functionally
classified, according to MIPS database (Mewes et al.,
1999), in categories previously shown to be associated
with cell-cycle (Table 1).

This shows that our analysis is capable of providing
additional insight not accessible by a visual inspection
of hierarchically ordered data as performed by Cho et
al. (1998). The complete list of these 106 genes along
with their functional classification is included in the
supplemental material.

Convergence of the Gibbs sampler
We assessed the appropriateness of our ‘burn-in’ period
by comparing posterior distributions obtained from two
independent runs of the Gibbs sampler (Figure 3). First
Gibbs sampler was initialized with the number of mixture
components set to one while the second Gibbs sampler
was initialized by assuming that each profile was gener-
ated by a separate mixture component. As it can be seen
from Figures 3a and 3b, the number-of-clusters parameter
(Q) quickly converged to the same stationary distribution.
Its posterior distribution, as well as the posterior distri-
butions of other model parameters generated by the two
runs were indistinguishable after the ‘burn-in’ period we
used (100 000 samples) (data not shown). Furthermore,
posterior pairwise probabilities, our key parameters used

for creating clusters, correlated extremely well for two in-
dependent runs (Figure 3c). These results led us to believe
that the ‘burn-in’ period we used was appropriate. In this
paper we based our clustering on the data from a single
run. An alternative approach would be to perform several
independent runs and average the results. Potential bene-
fits of running several shorter runs instead of a single long
Gibbs sampler, as well as advantages of using potentially
more efficient Gibbs sampling scheme (e.g. Jain and Neal,
2000; MacEachern, 1994) need to be further investigated.

Importance of Model Averaging
To demonstrate the importance of model-averaging in
the process of identifying groups of similar profiles, we
performed a finite mixture analysis of the cell cycle data.
To do this we used the MCLUST software described
by Fraley and Raftery (1999). In concordance with our
infinite mixture model we used the unequal volume
spherical model. We first identified the optimal number
of clusters using the Bayesian Information criterion (BIC)
(Schwarz 1978). Plot of BICs for models having between
one and 100 clusters is shown in Figure 4a. The model
with 23 clusters had the highest BIC and was assumed
to be ‘optimal’. In the finite mixture approach, model
parameters in the finite mixture model are first calculated
based on maximum likelihood principle. Based on these
estimates, clusters are then formed based on the posterior
probabilities of individual profiles of being generated by
a particular mixture component (McLachlan and Basford,
1987; Fraley and Raftery, 1999; Yeung et al., 2001a).
Results of this analysis were compared to the results of
our infinite mixture model. The goal of the comparison
was to compare the reliability of clusterings obtained
by two different approaches. In this respect, we posed
the following question: How robust are the probabilities
of concluding that two expression profiles are generated
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Table 1. Functional classification of 106 genes implicated by our analysis but not implicated in the original paper (Number of new genes) compared to
functional categorization of 387 genes implicated in the original paper (number of old genes). Since some of the genes belong to multiple categories, totals in
the table are larger than total number of genes

Functional category Number of new genes Number of old genes

Cell cycle and dna processing 16 158
Cell fate 11 70
Cell rescue, defense and virulence 7 14
Cellular communication/signal transduction mechanism 1 5
Cellular transport and transport mechanisms 5 23
Classification not yet clear-cut 2 13
Control of cellular organization 1 16
Energy 3 15
Metabolism 20 60
Protein fate (folding, modification, destination) 6 18
Protein synthesis 0 4
Regulation of/interaction with cellular environment 1 16
Subcellular localisation 28 196
Transcription 10 44
Transport facilitation 5 14
Unclassified protein 51 99

by the same probability distribution (i.e. that they will
cluster together) in the two approaches? To assess the
robustness of the finite mixture approach we repeated the
analysis assuming that the number of clusters is one less
or one more than the number indicated by BIC. That
is, we fitted the finite mixture models with 22 and 24
mixture components and calculated the pairwise posterior
probabilities of two profiles being clustered together
for all pairs of profiles and for all three finite mixture
models. Suppose that pq

ik is the posterior probability
that the i th profile is generated by the kth mixture
component (McLachlan and Basford, 1987) in the model
with q mixture components. Than, the pairwise posterior
probability of two profiles (profile i and profile j)
being generated by the same mixture component can be
estimated as

Pq
i j =

q∑
k=1

pq
ik pq

jk

Scatter plots of pairwise probabilities for mixture mod-
els with 22 and 24 mixture components against the model
with 23 mixture components, along with the correspond-
ing coefficients of linear determination (R2) are shown in
Figure 4b and 4c. It is obvious from these plots that there
is a strong dependence of these probabilities on the num-
ber of mixture components used in the analysis. A small
deviation in the number of clusters could have a strong
influence on the quality of clusters as well as the estimated
confidence in the clustering. That is, the results from the
finite mixture approach can be highly non-robust to the
selected ‘optimal’ number of clusters. This means the cor-
rect specification of the number of clusters is a paramount

in the finite mixture approach, which would typically be
difficult in practice without substantial amount of prior
information to justify such specification.

When the number of mixture components is averaged
out, as it is in the infinite mixture approach, the posterior
distribution of clusterings, and consequently clusters cre-
ated based on this distribution, is robust with respect to the
specification of the prior number of clusters. Doubling or
halving (setting α = 2 or 0.5) of the mean prior number of
clusters (Escobar, 1994) does affect the posterior distribu-
tion of the number of clusters (Figure 4d) but has little
effect on the posterior pairwise probabilities (Figure 4e
and 4f).

Although regularity conditions required for BIC to be
asymptotically correct are not satisfied in the finite mixture
model, empirical studies have shown that the criterion
works quite well in identifying the correct number of
mixture components (Biernacki and Govaert, 1999). Our
goal here was not to propose a better approach to
obtaining the number of clusters in the data. However,
we believe that there are shortcomings with the finite
mixture approach that are remedied by the infinite mixture
approach. In the cluster analysis based on the finite
mixture model, calculated confidence in a particular
clustering does not take into account the uncertainties
related to the choice of the right number of clusters based
on the BIC criterion. Consequently, they are valid only
under the model where a specific number of clusters
is assumed known. On the other hand, when there is
uncertainty about the number of clusters, as is often the
case in practice, we demonstrated that ensuing results can
be highly sensitive to the chosen number of clusters. These
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Fig. 4. Effect of changes in the assumed number of mixture components (clusters) for finite and infinite mixture models. (a) BIC criterion for
number of clusters ranging from 1 to 100. (b) Scatter plot of pairwise probabilities of two profiles being clustered together for the ‘optimal’
with 23 mixture components versus the model with 22 components. (c) Scatter plot of pairwise probabilities of two profiles being clustered
together for the ‘optimal’ with 23 mixture components vs the model with 24 components. (d) Posterior distribution of number of mixture
components for three different levels of α. (e) Scatter plot of posterior pairwise probabilities of two profiles being clustered together for
α = 1 versus α = 0.5. (f) Scatter plot of posterior pairwise probabilities of two profiles being clustered together for α = 1 versus α = 2.

are compelling reasons, in our view, for circumventing
the whole process of identifying the number of clusters
altogether by integrating it out, as it is done in the infinite
mixture approach.

Simulated Replicates data
We performed a simulation study to assess the advantage
of using full replicates-model (VII) in situations when the
experimental variability varies from gene to gene. Data
was simulated to represent a two-cluster situation with
sixty observations from Gaussian distributions in each
cluster. The number of replicates was two or ten. 1000
data sets were simulated for each, two and ten replicates
situation. Following the structure of the model (VII), data
was generated in two stages:
Stage 1:

120 mean expression profiles (y1, . . . , y120) were gener-
ated. Sixty of them (y1, . . . , y60) were randomly sampled
from the Gaussian distribution with the mean of 0 and
the variance 0.005, and other 60 (y61, . . . , y120) from the
Gaussian distribution with the mean of 1.5 and same vari-
ance. Between-replicates variances for each mean expres-
sion profile (ψ2

1 , . . . , ψ2
120) were randomly sampled from

the Inverse Gamma distribution with the shape parame-
ter 2 and the scale parameter 0.4 for the two-replicates
scenario, and with the scale parameter two and the loca-
tion parameter two for the ten-replicates scenario. These
parameters reflect the scenario in the which majority of
between profiles variability within the same cluster is due
to the experimental between-replicates variability, and the
total variability in averaged profiles (x̄i•) was comparable
for two and ten replicates situation.
Stage 2:

For each mean expression profile yi , i = 1, . . . , 120,
G = 2 or 10 expression profile replicates (xi,1, . . . , xi,G)

were randomly sampled from the Gaussian distribution
with the mean yi and the variance ψ2

i .
The clustering procedure based on the full model

showed an improvement in the ability to correctly separate
observations from different clusters. The difference is
particularly evident in the situation when the between
replicates variability is high. Scatter plots in Figure 4
represent observed differences between average posterior
pairwise probabilities for a profile and the rest of the
profiles in the same cluster and in the opposite cluster
(Ri , i = 1, . . . , 120) for all 1000 simulated samples. That
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Fig. 5. Scatter plot of the differences between average posterior pairwise probabilities for a profile with the rest of the profiles in the same
cluster and in the opposite cluster (Ri , i = 1, . . . , 120) for all 1000 simulated data sets. Red dots represent the full model-based analysis and
green dots represent the analysis based on the averaged profiles. Vertical lines denote two cluster centers at 0 and 1.5. (a) Profiles with the
below median between replicates standard deviation. (b) Profiles with the between replicates standard deviation being between 50th and 95th
percentile. (c) Profiles with the higher than 95th percentile between replicates standard deviation. (d), (e) and (f) are same as (a), (b) and (c)
respectively only for 2 replicates situation.

is, the Rs are defined as:

Ri =
60∑
j=1

Pi j

60
−

120∑
j=61

Pi j

60
, for i = 1, . . . , 60, and

Ri =
120∑
j=61

Pi j

60
−

60∑
j=1

Pi j

60
, for i = 61, . . . , 120.

The more positive this difference is, it is more likely that
the profile will be correctly clustered. The more negative
this difference is, it is more likely that the profile will be
misclassified.

As the between replicates variability increases, the
difference in the performance of the full replicates model
vs. the simple model becomes more obvious. For the
below median variable profiles in the ten replicates
situation (Figure 5a), both methods perform similarly with
the full model showing somewhat higher confidence in the
correct clustering. For variabilities between the median
and the 95th percentile of all variabilities (Figure 5b
and 5e), the full model still behaves as expected while
the probability of correctly clustering profiles that are
relatively far from cluster centers using the simple model

is seriously diminished (circled observations). This trend
is evident in the two-raplicates situation even in the
lowest variability group (Figure 5d). In the extreme
variability situations (Figure 5c and 5f), in addition to
this trend, there is also an increased chance of incorrectly
classifying profiles that are lying between or close to
two cluster centers. These observations suggest that, when
experimental replicates are available, there is a clear
advantage of using the full model instead of using a simple
model with averaged data.

DISCUSSION
Assuming a few basic principles, the Bayesian approach
is the optimal approach to drawing uncertain conclusions
from noisy data (Baldi and Brunak, 1998). The utility
of Bayesian approach in computational biology has been
demonstrated in a multitude of situations ranging from
the analysis of biological sequences (Liu and Lawrence,
1999), to identification of differentially expressed genes.
(Newton et al., 2001; Baldi and Long, 2001; Long et
al., 2001; Lonnstedt and Speed, 2001). In this article we
developed a model-based clustering procedure utilizing
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the Bayesian paradigm for knowledge discovery from
noisy data. We postulated a reasonable probabilistic model
for generation of gene expression profiles and performed
clustering by estimating the posterior distribution of clus-
terings given data. The clustering and the measures of
uncertainty about the clustering are assessed by model
averaging across models with all possible number of
clusters. In this respect, the model-averaging approach
represents a qualitative shift in the problem of identifying
groups of co-expressed genes.

Previously, Schmidler et al. (2000) used the Bayesian
model-averaging approach to estimate probabilities of
a particular secondary structure after averaging over all
possible segmentation. Furthermore, Zhu et al. (1998)
used a similar approach to estimate distances between a
pair of sequences after averaging over all possible align-
ments. In both situations, taking into account uncertainties
in the model selection proved beneficial for the over-
all performance of the computational procedure. Precise
quantification of uncertainties related to clustering of
expression profiles is especially important when obtained
clustering is used as the starting point for identifying
common regulatory motifs (e.g. Tavazoie et al., 1999)
for genes that cluster together. The inclusion of genes that
have a low probability of actually belonging to a cluster
in such an analysis is likely to seriously undermine ones
ability to detect relevant commonalities in regulatory re-
gions of clustered genes. One appealing way of taking into
account uncertainties about created clusters in identifying
common regulatory sequences is to simultaneously model
both gene expression and corresponding promoter se-
quence data. Holmes and Bruno (2000) recently proposed
a ‘sequence-expression’ model that incorporates both, the
Bayesian finite mixture model for expression data and the
sequence model of Lawrence et al. (1993) for promoter
sequence data. Extending this model to incorporate model-
averaging over models with different number of clusters
and for incorporating experimental replicates seems to be
a logical next step in developing such models.

The procedure we used to create clusters based on the
estimated posterior distribution of clusterings is the usual
complete linkage nearest-neighbor approach with pairwise
posterior distances between two profiles as the distance
measure (Everitt, 1993). However, in contrast to usual dis-
tance measures (e.g. the Euclidian distance) that are based
only on two profiles at a time, our measure incorporates in-
formation from the whole data set in assessing the distance
between any two profiles. The effect of such ‘information
pulling’ is demonstrated by comparing the distribution of
our posterior distances to the distribution of the commonly
used Euclidian distances (e.g. Lukashin and Fuchs, 2001)
calculated for the same data set (Figure 1c). The high
concentration of posterior distances around the maximum
distance (equal to 1) allows for an easy identification of

unrelated profiles. On the other hand, the distribution
of corresponding Euclidian distances is rather smooth
throughout the range and there is no obvious separation of
clearly unrelated genes. This point is further emphasized
by observing distributions of these two distance measures
for the structure-less data set obtained by bootstrapping
data (Efron and Tibshirani, 1998) from the original data set
(Figure 1b and 1d). The distribution of posterior pairwise
distances is drastically different for the bootstrapped data
set when compared to the original data and it indicates
that all data in the bootstrapped set form a single cluster.
In contrast to this, differences between distributions of
Euclidean distances for two data sets is rather subtle and it
is unclear what distance indicates a high-confidence sep-
aration between two profiles. Furthermore, posterior pair-
wise probabilities are themselves meaningful measures
of uncertainty about similarity of two expression profiles
and they can be used to assess confidence and uncertainty
about clusters and the membership of individual profiles
in a cluster. On the other hand, usual distance measures
such as Euclidian distance and similarity measures such as
correlation coefficient are meaningful only in comparison
to their distribution under the no-structure assumption
(Lukashin and Fuchs, 2001; Herrero et al., 2001).

The issue of performing experimental replicates to model
various sources of experimental variability will likely play
an increasingly important role in modeling microarray
data. Currently, information about experimental variability
is commonly used when the goal of the analysis is to
identify differentially expressed genes. Results of our
simulation study show that using this information when
clustering expression data is likely to improve results
of the analysis. Failing to take into account differences
in precisions with which expression levels of different
genes are measured can result in both, a failure to identify
existing and/or inferring non-existing relationships.

A major assumption of mixture model, finite and in-
finite, is that, given the classification variables and the
parameters of individual mixture components, expression
profiles for individual genes are independently distributed
as multivariate Gaussian random variables. It has been
previously shown (Yeung et al., 2001a) that the normality
assumption is rather reasonable for properly transformed
microarray data sets. In our own experience with both
Affymetrix oligonucleotide arrays and two-color cDNA
microarrays, after a proper normalization, distribution of
log-transformed data closely resembles Gaussian distribu-
tions with different variances for different genes (data not
shown). Conditional independence assumption is more
difficult to assess. Typically, in the process of normalizing
microarray data, an attempt is made to remove system-
atic correlations that can occur due to the microarray-
to- microarray variability that systematically affects all
genes on the microarray (Yang et al., 2001). More subtle
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correlations due to, for example, cross-hybridizations re-
sulting from sequence similarities are much more difficult
to assess. Even if such correlations can be quantified, there
is no obvious way to incorporate them in the traditional
mixture model.

Finally, the model based approach described here is
a flexible platform for dealing with various other issues
in the cluster analysis of expression profiles. In addi-
tion to model-averaging and outlier detection that we
demonstrated, Gibbs sampler described here can be easily
modified to handle incomplete profiles (profiles missing
some data points). In such a situation, it is again impor-
tant to take into account additional source of variability
introduced by imputing missing data points. At this point
we are unaware of another clustering approach capable of
dealing with all these problems at once
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APPENDIX
Posterior probability distributions for the single
replicate case

p(µ j |c, σ 2
j , X,λ, r) = fN


µ j

∣∣∣∣∣
r−1x̄ j• + σ 2

j
n j

λ

r−1 + σ 2
j

n j

,
r−1 σ 2

j
n j

r−1 + σ 2
j

n j

I




p(σ−2
j |X, M, β, w) = fG

(
σ−2

j

∣∣∣∣∣ Mn j + β

2
,
s2

j + βw

2

)

f (λ|µ1, . . . ,µQ , r) = fN


λ

∣∣∣∣∣
σ 2

x

∑
i µi
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Q µx

σ 2
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x
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Q

σ 2
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f (r |µ1, . . . ,µQ , λ) = fG

(
r

∣∣∣∣∣ M Q + 1

2
,

∑
i (µi −λ)(µi −λ)′ + σ 2

x
2

)

where

µx =
∑T

i=1 xi

T
σ 2

x =
∑T

i=1 (xi − µ)(xi − µ)′
T M − 1

x̄ j• =
∑T

ci = j xi

n j
s j =

T∑
ci = j

(xi − µ j )(xi − µ j )
′.

f (w|σ−2
1 , . . . , σ−2

Q , β) = fG


w

∣∣∣∣∣ Qβ + 1

2
,
β

∑
j σ−2
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f (β|σ−2
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(
β
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exp

(
−β−1
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×
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j


(wσ−2
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β
2 exp


−

σ−2
j wβ)
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 .

Posterior conditional probability distributions of
parameters in the multiple replicates model
The prior distribution for the within profile variance is
given by

p(ψ−2
i ) = fG

(
ψ−2

i

∣∣∣∣∣1

2
,
σ 2

w

2

)

where

σ 2
w =

∑T
i=1

∑G
k=1 (xik − x̄i•)(xik − x̄i•)′

(G − 1)T M
and x̄i• =

∑G
k=1 xik

G
.

The posterior conditional distribution for parameters in
the model for experimental replicates are:

f (yi |ci = j,µ j , σ
2
j , ψ

2
i , xi1, . . . , xiG)

= fN
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i
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2
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w

2

)

siw =
G∑
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(xik − yi )(xik − yi )
′

s j =
T∑
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′ ȳ j• =
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ci = j yi

n j

p(µ j |c, σ 2
j , Y,λ, r) = fN


µ j
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r−1ȳ j + σ 2

j
n j

λ

r−1 + σ 2
j

n j

,
r−1 σ 2

j
n j

r−1 + σ 2
j

n j

I




p(σ−2
j |Y, M, β, w) = fG

(
σ−2

j
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,
s2
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2

)
.

Conditional posterior distributions for other parameters
remain unchanged.
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