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ABSTRACT
Motivation: Identifying patterns of co-expression in microarray
data by cluster analysis has been a productive approach
to uncovering molecular mechanisms underlying biological
processes under investigation. Using experimental replicates
can generally improve the precision of the cluster analysis
by reducing the experimental variability of measurements.
In such situations, Bayesian mixtures allow for an efficient
use of information by precisely modeling between-replicates
variability.
Results: We developed different variants of Bayesian mixture
based clustering procedures for clustering gene expression
data with experimental replicates. In this approach, the
statistical distribution of microarray data is described by a
Bayesian mixture model. Clusters of co-expressed genes are
created from the posterior distribution of clusterings, which is
estimated by a Gibbs sampler. We define infinite and finite
Bayesian mixture models with different between-replicates
variance structures and investigate their utility by analyzing
synthetic and the real-world datasets. Results of our analyses
demonstrate that (1) improvements in precision achieved by
performing only two experimental replicates can be dramatic
when the between-replicates variability is high, (2) precise
modeling of intra-gene variability is important for accurate iden-
tification of co-expressed genes and (3) the infinite mixture
model with the ‘elliptical’ between-replicates variance struc-
ture performed overall better than any other method tested.
We also introduce a heuristic modification to the Gibbs sampler
based on the ‘reverse annealing’ principle. This modification
effectively overcomes the tendency of the Gibbs sampler to
converge to different modes of the posterior distribution when
started from different initial positions. Finally, we demon-
strate that the Bayesian infinite mixture model with ‘elliptical’
variance structure is capable of identifying the underlying
structure of the data without knowing the ‘correct’ number of
clusters.

∗To whom correspondence should be addressed.

Availability: The MS Windows™ based program named
Gaussian Infinite Mixture Modeling (GIMM) implementing the
Gibbs sampler and corresponding C++ code are available at
http://homepages.uc.edu/~medvedm/GIMM.htm
Contact: Mario.Medvedovic@uc.edu
Supplemental information: http://expression.microslu.
washington.edu/expression/kayee/medvedovic2003/
medvedovic_bioinf2003.html

1 INTRODUCTION
Identifying patterns of gene co-expression in microarray
data by cluster analysis has been a productive approach
to uncovering molecular mechanisms underlying biological
processes under investigation. The goal of the cluster ana-
lysis is to identify groups of genes with similar patterns of
expression across multiple experimental conditions. Such a
multiple-gene at a time analysis approach utilizes the inher-
ent parallelism in measuring gene expression by microarray
technology. The biological significance of cluster analyses
results has been demonstrated in numerous studies. The repro-
ducibility and the biological validity of conclusions drawn
from results of a cluster analysis will depend directly on the
reproducibility of patterns of expressions and groups of genes
associated with these patterns, which are both identified in the
cluster analysis.

The utility of a cluster analysis, as well as the utility of any
other analytic approach, is dependent on the quality of the
data that is analyzed. The traditional experimental approach
to improving precision of inherently noisy microarray data
is by performing experimental replicates. In the context of
cluster analysis, the increased power of detecting existing
patterns in the data that is achieved by performing exper-
imental replicates has been discussed by Dougherty et al.
(2002). Replicated observations also allow us to quantify pre-
cisely the experimental noise in measurements for each gene
at each experimental condition. When the level of experi-
mental variability varies between different genes and between
different experimental conditions, experimental replicates

1222 Bioinformatics 20(8) © Oxford University Press 2004; all rights reserved.

http://homepages.uc.edu/~medvedm/GIMM.htm
http://expression.microslu


Bayesian clustering of replicated microarray data

are necessary for assessing the reproducibility of observed
patterns.

Virtually all classical clustering algorithms (Eisen et al.,
1998; Tavazoie et al., 1999; Tamayo et al., 1999; Yeung
et al., 2001), as well as a multitude of brand new pro-
cedures (Herrero et al., 2001), have been applied in the
context of clustering microarray data. However, the majority
of the currently used approaches are not able to accommod-
ate appropriately replicated microarray data. Previously, we
demonstrated that clustering approaches that make use of
the information about the between-replicates variability gen-
erally perform better than approaches that do not (Yeung
et al., 2003). We also showed that model-based clustering
approaches generally outperform heuristic methods in this
context. Generally, algorithms based on the finite mixture
model (FMM; Yeung et al., 2001; Fraley and Raftery, 2002)
applied to averaged profiles performed better than heuristic
algorithms. On the other hand, the Bayesian infinite mixture
model (IMM; Medvedovic and Sivaganesan, 2002), capable
of capturing gene- and experiment-specific variability, per-
formed better than finite mixtures algorithms that do not
have built-in error models for replicated measurements. In
addition to precisely modeling intra- and inter-gene variab-
ilities in expression measurements, the IMM approach is
unique in its ability to incorporate uncertainties related to
the choice of the ‘correct’ number of clusters in the analysis.
In our experiments with simulated and real world data-
sets, Bayesian infinite mixtures outperformed all alternative
approaches.

In this paper, we describe different variants of the Bayesian
FMM- and IMM-based algorithms for clustering replicated
microarray data and investigate their performance on simu-
lated and real world datasets. The new models not previously
described are the IMM model with the ‘elliptical’ variance
structure and Bayesian FMMs with ‘spherical’ and ‘elliptical’
variance structures. The performance of new procedures
is compared with alternative approaches for clustering rep-
licated data based on heuristic and model-based clustering
methods. We investigate the consequences of incorporating
uncertainties related to the choice of the number of clusters by
comparing otherwise equivalent FMMs and IMMs. The need
to incorporate information on between-replicates variation is
addressed by comparing equivalent models with different vari-
ance structures. Effects of experimental replicates are demon-
strated by analyzing simulated and real world datasets with
different numbers of replicates. A particularly striking obser-
vation is that the ‘elliptical’ IMM with an automatic algorithm
for creating clusters performed as well as or better than
the majority of other clustering approaches that utilized the
information about the correct number of clusters in the data.
Finally, we demonstrate that the previously described Gibbs
sampler has problems with multimodal posterior distribu-
tions that are induced by some datasets and describe heuristic
modifications that effectively circumvent this problem.

2 METHODS
2.1 Bayesian mixtures for replicated

microarray data
Suppose that T gene expression profiles were observed
across M experimental conditions and that the experiment
was replicated G times. If yijg represents the gth replicate
of the expression measurement for the ith gene under j th
experimental condition, then yig = (yi1g , yi2g , . . . , yiMg)

represents the expression profile in the gth replicate for the
ith gene. Suppose that xi = (xi1, . . . , xiM) is the mean expres-
sion profile for the ith gene, where xij is the mean expression
level of the ith gene at the j th experimental condition. In
our hierarchical model, each gene mean expression profile is
viewed as being generated by one out of Q different under-
lying expression patterns. Expression profiles generated by
the same pattern form a cluster of similar expression profiles.
If ci is the classification variable indicating the pattern that
generates the ith mean expression profile (ci = q means that
the ith expression profile was generated by the qth pattern),
then a ‘clustering’ is defined by a set of classification vari-
ables for all genes, C = (c1, c2, . . . , cT ). Underlying patterns
generating clusters of expression profiles are represented by
multivariate Gaussian random variables. Profiles clustering
together are assumed to be a random sample from the same
multivariate Gaussian distribution.

The hierarchical structure of the model is described in terms
of a directed acyclic network in Figure 1. Nodes (squares) in
this diagram represent random variables, and directed arcs
(arrows) specify conditional dependences between variables
in terms of the directed Markov property, which states that a
variable is conditionally independent of its non-descendants,
given its parents in the model. M = (µ1, . . . , µQ) and
� = (σ 2

1 I, . . . , σ 2
QI) denote means and variance-covariance

matrices of multivariate Gaussian random variables defining
Q underlying patterns, respectively (I denotes the identity
matrix). ψij represents the between-replicates variance for
the ith gene at the j th experimental condition. ψ i =
(ψi1, . . . , ψiM) is the diagonal of the between-replicates
variance–covariance matrix for the ith gene, and off-diagonal
elements are assumed to be zero. This represents the assump-
tion that experimental replicates under different experimental
conditions are obtained by independent experiments, which
is commonly the case in practice. We call the model ‘spher-
ical’ when the between-replicates variance of a single gene
is assumed to be homogeneous across all experimental con-
ditions (i.e. ψi1 = ψi2 = · · · = ψiM for all i =
1, . . . , T ). Otherwise, we say that the model is ‘elliptical’ with
respect to between-replicates covariance structure. Variables
(λ, τ), (β, φ) and α are hyper-parameters in prior distributions
of model parameters M, � and C, respectively. The specifica-
tion of the prior distribution for classification variables (C)
determines whether the model represents finite or infinite
mixtures. Such a model for strictly Bayesian infinite mixtures
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Fig. 1. Bayesian mixture model.

with the spherical variance structure has been described by
Medvedovic and Sivaganesan (2002). Here, we describe
spherical and elliptical models for both finite and infinite
mixtures.

2.1.1 Conditional distributions for finite and infinite mixture
models Distribution of the data for gene i, given the mean
expression profile xi and the between-replicates variance
vector, ψ i , is

p(yig | xi , ψi) = fN(yig | xi , Iψ2
i
), g = 1, . . . , G,

i = 1, . . . , T ,

where Iψ2
i

is a diagonal matrix with ψ2
i on the diagonal and

fN(· | m, v) denoting the probability density function (p.d.f)
of a Gaussian random variable with the mean vector m and
the variance–covariance matrix v. Mean expression profiles
from the qth cluster are distributed as

p(xi | ci = q, M, �) = fN(xi | µq , σ 2
q ), i = 1, . . . , T .

In the FMM with the number of components fixed at Q,
the conditional prior distribution of ci , given α and all other
classification variables C−i = (c1, . . . , ci−1, ci+1, . . . , cT ), is

p(ci = q | C−i , α) = n−i,q + α/Q

T − 1 + α
,

i = 1, . . . , T ; q = 1, . . . , Q,

where n−i,q is the number of profiles in the cluster q without
the ith profile (defined by C−i) (Rasmussen, 2000; Neal,
2000). In the case of infinite mixtures, Q is let to go to infinity,
which results in following prior probabilities of the ith profile
being generated by an already existing component q,

p(ci = q | C−i , α) = n−i,q

T − 1 + α
,

and the probability that a new component should be created,

p(ci �= cj , j �= i | C−i , α) = α

T − 1 + α
.

Differences between the prior distributions of classification
variables are propagated into the corresponding conditional
posterior distributions, given data and other parameters. Finite

mixtures posterior classification probabilities are

p(ci = q | C−i , yi1, . . . , yiG, µq , σ 2
q , ψ i )

= b
n−i,q + α/Q

T − 1 + α
fN

(
ȳi• | µq , Iσ 2

q +ψ2
i /G

)

i = 1, . . . , T , q = 1, . . . , Q;

ȳi• =
∑

g yig

G
.

On the other hand, infinite mixtures posterior classification
probabilities also describe the probability of creating a new
component/cluster:

p(ci = q | C−i , yi1, . . . , yiG, µq , σ 2
q , ψi)

= b
n−i,q

T − 1 + α
fN

(
ȳi• | µq , Iσ 2

q +ψ2
i /G

)

i = 1, . . . , T , q = 1, . . . , Q,

p(ci = cj , j �= i | C−i , yi1, . . . , yiG, ψ i , α)

= b
α

T − 1 + α

∫
fN

(
ȳi• | µq , Iσ 2

q +ψ2
i /G

)

× p(µq , σ 2
q | λ, τ , β, ϕ) dµq dσ 2

q ,

where b is a normalizing constant assuring that all probab-
ilities for a single profile add to 1 in both finite and infinite
models. In the current implementation, the integral above is
approximated by

fN

(
ȳi• | µp, Iσ 2

p+ψ2
i /G

)
,

where µp and σp are sampled from their prior distributions.
The differences between the spherical and elliptical intra-

gene variance models is in the composition of vectors
ψ1, . . . , ψT . In the elliptical model, each component of each
vector is estimated separately, while in the spherical model,
all data within the same gene are pooled to estimate the single
intra-gene variance. The prior distributions for the elements
of ψs are identical in both situations.

Instead of specifying parameter α, which describes the prior
belief about the number of clusters in the data, as we did pre-
viously (Medvedovic and Sivaganesan, 2002), in the infinite
mixture model, we treat α as a random variable with a vague
gamma prior and sample new α in each cycle of the Gibbs
sampler (Rasmussen, 2000). In the case of the FMM, α is
set to 1. Prior and posterior distributions for all parameters in
both models are given in the Web supplement.

2.2 The Gibbs sampler
The Gibbs sampler (Gelfand and Smith, 1990) is a general
procedure for sampling observations from a multivariate dis-
tribution. In short, a Gibbs sampler proceeds by iteratively
drawing observations from complete posterior conditional
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distributions of all components. In the limit, such a sequence
describes observations from the joint multivariate distribu-
tion. In our case, the joint posterior distribution of interest is
the posterior distribution of all parameters, given data. Since
in the limit this process generates the sample from the dis-
tribution of interest, it can be assumed that the empirical
distribution of generated clusterings, CB , CB+1, . . . , after B

‘burn-in’ samples approximates the true posterior distribution
of clusterings.

2.3 Cluster formation and inference
Given the sequence of clusterings (CB , CB+1, . . . , CS) gener-
ated by the Gibbs sampler after B ‘burn-in’ cycles, pair-wise
probabilities for two genes to be generated by the same pattern
are estimated as

Pij = No. of samples after ‘burn-in’ for which ci = cj

S − B
.

Using these probabilities as similarity measures or equival-
ently using Dij = 1 − Pij as the distance measure, clusters
of similar expression profiles are created by applying one of
the traditional linkage principles. We used the complete link-
age with the distance of 1 to create clusters in a completely
unsupervised fashion. This has an intuitive justification by
defining clusters as groups of genes for which there exist at
least one pair of genes such that the probability of them being
co-expressed is equal to 0. In the analysis section, we refer
to this method as ‘Auto’ IMM clustering since the method
chooses the number of clusters automatically. When the num-
ber of clusters is known for any reason, and in the case of the
FMM models, we used the average linkage principle to create
the pre-specified number of clusters.

In the context of Bayesian inference, such posterior pair-
wise probabilities of co-expression carry more meaning than
any other traditionally used similarity measures because it
actually describes the degree of belief or confidence in
the statement that two profiles are generated by the same
underlying expression pattern. Such posterior probabilities
incorporate all the information about various sources of noise
in the data and, in the case of infinite mixtures, the uncer-
tainties with respect to the correct number of clusters in the
data. In contrast, traditional pair-wise measures of similar-
ity or distance are only meaningful in the context of the
estimated null-distribution that describes the probability of
observing a specific value purely by chance due to random
fluctuations in the data. Constructing a null distribution that
would take into account all sources of variability and uncer-
tainties seems to be a difficult problem, and we are not
aware of any existing solution. Furthermore, posterior pair-
wise probabilities of co-expression incorporate information
from the whole dataset, while the traditional pair-wise dis-
tance/similarity measures use only the data specific to two
profiles at a time. Resulting improvements in precision have
been demonstrated by Medvedovic and Sivaganesan (2002).

2.4 Convergence of the Gibbs sampler
Two aspects of the Gibbs sampler convergence that generally
need to be assessed are the appropriateness of the ‘burn-in’
period after which a Gibbs sampler has attained its stationary
distribution, and the mixing of the sampler, which describes
how well a finite sample obtained by the Gibbs sampler
approximates the target distribution. In situations when the
posterior distribution being approximated is multi-modal, the
Gibbs sampler often has difficulties in switching between
different areas with high posterior probabilities, which can
result in ‘poor mixing’. That is, the sampler will be unable
to describe the whole posterior distribution in a computation-
ally feasible number of steps. This can result in either the
sampler getting trapped in a sub-optimal mode of the pos-
terior distribution resulting in sub-optimal clustering results;
or, because the sampler fails to visit all areas with significant
posterior probabilities, confidence estimates in the generated
clustering will be biased. Mixing problems related to multi-
modality of the target distribution can often be identified by
running multiple independent samplers from different initial
positions and comparing generated samples.

We devised a heuristic procedure for identifying mixing
problems with our sampler and the heuristic solution to the
potential problem of it being trapped in a sub-optimal mode
based on the idea of ‘reverse annealing’ (Medvedovic, 2000).
If π(·) is the target posterior distribution, ‘reverse anneal-
ing’ refers to ‘flattening’ the posterior distribution using the
transformation

π(ξ)(x) = πξ (x)

K(ξ)
, ξ < 1,

where K(ξ) is the normalizing constant. Based on this gen-
eral idea, if p(ci = j | C−i , �) is the conditional posterior
probability of placing the ith profile into the j th cluster, then
‘flattened probabilities’ are defined as

p(ci = j | C−i , �)ξ = p(ci = j | C−i , �)ξ

K(ξ)
, ξ < 1.

We use such modified probabilities during the ‘burn-in’ period
with the ‘cooling’ sequence that ensures sampling from the
original posterior distribution after the ‘burn-in’. Suppose that
the sampler is run for a total of 20 000 cycles, with the first
10 000 being discarded as the ‘burn-in’. Then we define the
‘cooling’ sequence in such a way that ξ0 = 0.01 represents an
almost completely flattened distribution, ξ10 000 = 0.99 rep-
resents an almost non-modified distribution and ξn → 1 as
n → ∞, where n is the number of Gibbs sampler iterations.
In the analysis of simulated data described in this paper, we use
the linear logistic function ξn = 1/[1 + exp(4.6 − 0.0009n)]
to define the cooling sequence. As in the general ‘anneal-
ing’ optimization approach, allowing the sampler to identify
the highest mode of the distribution while it is flattened and
mixing is easy, and slowly transitioning to the unmodified dis-
tribution facilitates a high probability of staying in the highest
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Table 1. Summary of all clustering methods that were compared in the analysis.

Variants of Bayesian mixtures Averaged over replicated measurements SD-weighted similarity

IMM (elliptical, spherical and averaged) Hierarchical complete linkage
(correlation or distance)

Hierarchical complete linkage
(correlation or distance)

IMM auto (elliptical, spherical and averaged) Hierarchical average linkage
(correlation or distance)

Hierarchical average linkage
(correlation or distance)

FMM (elliptical, spherical and averaged) k-means (correlation or distance) k-means (correlation or distance)
Hierarchical finite mixture algorithms

(MCLUST-HC)
FITSS (e.g. MCLUST-HC)

mode. Results of our analysis seem to support this heuristic
argument. In the supplemental material, we demonstrate in
detail effects of the annealing in the analysis of one simulated
dataset (Figure S1 and accompanying text).

In the analysis of the galactose dataset, such an anneal-
ing strategy did not solve the problem of the Gibbs sampler
converging to a sub-optimal mode (Figure S2 and accompa-
nying text in the Web supplement). This is probably due to
the existence of multiple modes with the basin of attraction
of similar posterior probability. In such situations, it is crucial
to average over all such areas of high posterior probabilities.
In this case, we apply an additional heuristic modification
of the algorithm by stopping the annealing process before ξ

reaches 1. That is, we allow the cooling parameter to con-
verge only to ξmax < 1. We choose the stopping point, ξmax,
based on three criteria: (1) we look for the maximum correl-
ation between pair-wise posterior probabilities generated by
four independent samplers; (2) among all stopping points with
the approximately maximal correlations, we choose the one
that had the ‘best mixing properties’, meaning that clustering
labels for each gene changed at least once after the burn-in
period and (3) if there is more than one stopping point that
satisfies the first two criteria, we choose the largest one. In our
analyses, such a heuristic modification of the Gibbs sampler
performed very well in all situations. However, since such an
analysis is computationally intensive, we used this approach
only for the analysis of galactose data.

3 RESULTS
We examined the performance of various Bayesian mixture
models on synthetic and the real-world datasets. Synthetic
datasets were designed to reflect noise and artifacts commonly
seen in the microarray data. For all situations, we established
benefits of performing replicated microarray experiments as
well as benefits of using Bayesian mixtures over heuristic
procedures and the traditional finite mixture models that do not
take into account gene-specific between-replicates variability.

The ability of different clustering procedures to re-create
the known underlying structure of the data was measured
in terms of the adjusted RAND index. The adjusted RAND
index (Hubert and Arabie, 1985) is a metric designed to assess

the degree of agreement between two partitions. The RAND
index itself is defined as the number of pairs of objects that
are either in the same groups in both partitions or in differ-
ent groups in both partitions, divided by the total number of
pairs of objects. The adjusted RAND index adjusts the score
so that its expected value in the case of random partitions is 0.
A high-adjusted RAND index indicates a high level of agree-
ment between the true partition of the data and the partition
(i.e. clustering) generated by a clustering procedure.

3.1 Alternative clustering procedures
Performance of Bayesian mixtures-based methods was com-
pared with commonly used alternative clustering procedures
(Table 1). Detailed descriptions of all algorithms and error-
weighted correlation and Euclidean distances can be found in
Yeung et al. (2003) and in the Web supplement.

3.2 Synthetic sine wave data
Each dataset consists of 400 data points (genes), 20 attrib-
utes (experiments) and six classes, each defined by a distinct
underlying pattern. Four of the six classes follow the periodic
sine function xij = sin(2πj/10 − πq/4), j = 1, . . . , 20, for
ci = q, for q = 1, 2, 3, 4, and the remaining two classes fol-
low the non-periodic linear function xij = j/20 for ci = 5
and xij = −j/20 for ci = 6. The G replicates (G = 1, . . . , 4)

for the ith gene were generated as yijg = xij +εijg where εijg

were generated as independent observations from the normal
distribution with mean 0 and SD ψij which were randomly
sampled from SD observed in the data described by Hughes
et al. (2000). In the ‘spherical’ scenario, ψij s were sampled
once per gene, resulting in ψi1 = ψi2 = · · · = ψiM , while
in the ‘elliptical’ scenario a new ψij was sampled for each
gene for each experimental condition resulting in an ‘ellipt-
ical’ variance structure. In the ‘high-noise’ scenario, randomly
sampled εijgs were multiplied by a factor of 6.

Several conclusions can be reached based on results shown
in Tables 2 and 3. First, as the number of experimental replic-
ates increases, the ability of all clustering methods to re-create
the underlying structure of the data improved. Regardless
of the true variance structure of the data, all methods that
take into account between-replicates variance show significant
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Table 2. (A) Average adjusted RAND indices for the ‘elliptical’ simulated data and (B) average number of clusters induced by different IMM algorithms with
Auto cluster creation

Method Number of replicates
Low Noise High Noise
1 2 3 4 1 2 3 4

A

Heuristic methods
Average link; correlation 0.76 0.76 0.80 0.90 0.20 0.34 0.32 0.43
Average link; distance 0.86 1.00 0.96 1.00 0.00 0.00 0.00 0.00
Complete link; correlation 0.70 0.71 0.75 0.82 0.26 0.39 0.44 0.52
Complete link; distance 0.96 0.93 0.96 0.96 0.07 0.27 0.27 0.53
k-means; correlation 0.76 0.76 0.80 0.90 0.31 0.52 0.57 0.62
k-means; distance 0.86 1.00 0.96 1.00 0.00 0.21 0.16 0.48

SD-adjusted heuristic methods
Average link; correlation NA 0.32 0.59 0.61 NA 0.18 0.48 0.59
Average link; distance NA 0.96 1.00 1.00 NA 0.13 0.47 0.67
Complete link; correlation NA 0.29 0.46 0.63 NA 0.18 0.48 0.57
Complete link; distance NA 0.96 1.00 1.00 NA 0.24 0.67 0.83
k-means; correlation NA 0.47 0.59 0.71 NA 0.22 0.44 0.51
k-means; distance NA 0.95 1.00 1.00 NA 0.49 0.78 0.77

Model-based methods
IMM—elliptical 0.93 1.00 1.00 1.00 0.41 0.98 1.00 1.00
IMM—elliptical Auto 0.60 1.00 1.00 1.00 0.34 0.99 1.00 1.00
IMM—spherical 0.93 1.00 0.96 1.00 0.41 0.48 0.66 0.75
IMM—spherical Auto 0.60 0.98 0.99 1.00 0.34 0.82 0.85 0.92
IMM—averaged 0.93 0.93 0.99 1.00 0.41 0.47 0.67 0.77
IMM—averaged Auto 0.60 0.61 0.62 0.64 0.34 0.45 0.46 0.50
FMM—elliptical 0.98 1.00 1.00 1.00 0.30 0.98 1.00 1.00
FMM—spherical 0.98 1.00 1.00 1.00 0.30 0.86 0.89 0.95
FMM—averaged 0.98 0.80 0.95 1.00 0.30 0.44 0.50 0.57
MCLUST-HC 0.97 0.97 0.99 1.00 0.36 0.44 0.57 0.51
MCLUST-FITTS 0.97 0.96 0.97 1.00 0.36 0.38 0.43 0.50

B

IMM—elliptical Auto 16.2 6.0 6.0 6.0 15.6 6.0 6.0 17.6
IMM—spherical Auto 16.2 7.6 7.8 7.0 15.6 10.4 10.2 6.0
IMM—averaged Auto 16.2 16.2 14.2 14.2 15.6 17.2 16.8 10.0

‘IMM elliptical Auto’, ‘IMM spherical Auto’ and ‘IMM averaged Auto’ refer to the corresponding IMM algorithm with the automatic selection of the number of clusters. Highest
average indices for each situation are in boldface and underlined.

improvement over corresponding methods that use only aver-
age profiles. Second, Bayesian mixtures showed significantly
better performance than heuristic methods. This was the case
when only averaged profiles were used in the analysis and
much more so when between-replicates variability was used
in the analysis. Third, the ‘elliptical’ variance model per-
formed significantly better than the ‘spherical’ model when
the true variance structure was ‘elliptical’, and it performed
only slightly worse when the actual variance structure was
‘spherical’. Finally, when the correct variance structure was
specified, the automatic IMM clustering performed as well as
IMM and FMM approaches with the specified correct num-
ber of clusters. Not only that, in these situations the automatic
clustering produced clusters that closely corresponded to the
correct classification, but it also produced exactly the correct
number of clusters.

3.3 Synthetic sporadic-genes data
Real-world microarray data generally contain a certain por-
tion of sporadic genes that do not belong to any particular
pattern in the data. To investigate the effects of such genes on
the performance of different clustering methods, we modified
our synthetic data by replacing 10% of genes with ‘sporadic
genes’ whose expression measurements at all experimental
conditions were generated by drawing independent observa-
tions from the uniform random variable on the interval [−1, 1].
Such sporadic genes were designated to the seventh class in
the calculation of RAND indices.

The relative performance of the tested clustering pro-
cedures in this situation resembled the results when there
were no sporadic genes (Fig. 2), in the sense that methods
that utilized the information about between-replicates vari-
ability performed better than the methods that ignored this
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Table 3. (A) Average adjusted RAND indices for the ‘spherical’ simulated data (B) average number of clusters induced by different IMM algorithms with
Auto cluster creation

Method Number of replicates
Low Noise High Noise
1 2 3 4 1 2 3 4

A

Heuristic methods
Average link; correlation 0.61 0.67 0.67 0.82 0.25 0.33 0.42 0.40
Average link; distance 0.28 0.70 0.73 0.90 0.00 0.00 0.00 0.00
Complete link; correlation 0.69 0.72 0.73 0.79 0.33 0.46 0.49 0.53
Complete link; distance 0.62 0.76 0.80 0.96 0.00 0.00 0.02 0.09
k-means; correlation 0.70 0.67 0.67 0.82 0.38 0.51 0.56 0.57
k-means; distance 0.44 0.70 0.73 0.90 0.00 0.00 0.00 0.00

SD-adjusted heuristic methods
Average link; correlation NA 0.35 0.64 0.73 NA 0.14 0.35 0.34
Average link; distance NA 0.77 0.75 0.90 NA 0.00 0.00 0.00
Complete link; correlation NA 0.33 0.70 0.77 NA 0.11 0.35 0.49
Complete link; distance NA 0.77 0.85 0.96 NA 0.09 0.14 0.23
k-means; correlation NA 0.52 0.75 0.75 NA 0.18 0.53 0.55
k-means; distance NA 0.83 0.75 0.90 NA 0.14 0.17 0.28

Model-based methods
IMM—elliptical 0.90 0.85 0.91 0.96 0.23 0.80 0.87 0.90
IMM—elliptical Auto 0.52 1.00 1.00 1.00 0.28 0.77 0.87 0.90
IMM—spherical 0.90 1.00 1.00 1.00 0.23 0.84 0.90 0.93
IMM—spherical Auto 0.52 1.00 1.00 1.00 0.28 0.84 0.89 0.93
IMM—averaged 0.90 0.94 0.91 0.92 0.23 0.42 0.46 0.64
IMM—averaged Auto 0.52 0.51 0.55 0.56 0.28 0.36 0.40 0.45
FMM—elliptical 0.71 1.00 1.00 1.00 0.23 0.78 0.87 0.90
FMM—spherical 0.71 1.00 1.00 1.00 0.23 0.84 0.90 0.92
FMM—averaged 0.71 0.89 0.93 0.96 0.23 0.32 0.39 0.48
MCLUST-HC 0.77 0.80 0.85 0.85 0.26 0.24 0.29 0.31
MCLUST-FITTS 0.77 0.90 0.95 0.95 0.26 0.27 0.38 0.35

B

IMM—elliptical Auto 19.0 6.8 6.4 6.2 15.4 5.8 6.0 6.0
IMM—spherical Auto 19.0 6.0 6.0 6.0 15.4 6.0 6.0 6.0
IMM—averaged Auto 19.0 19.4 18.4 17.4 15.4 16.2 17.0 16.2

Highest average indices for each situation are in boldface and underlined.

information, and Bayesian mixture-based models performed
better than heuristic methods. The automatic clustering pro-
cedure based on the IMM with the elliptical variance structure
again performed as well as any other method with a spe-
cified number of clusters (Table 4). The number of clusters
created by this approach for the high-error situation was
(7, 7, 7, 22, 22) which reflected the uncertainty about whether
sporadic genes should be placed in a single noisy cluster or
they all belong to individual clusters. However, the method
consistently identified the six distinct clusters in the data.

3.4 Yeast galactose data
We used the same subset of the Ideker et al. (2001) galactose
dataset as described in Yeung et al. (2003). This set consists
of 205 genes whose expression patterns reflect four functional
categories in the Gene Ontology Consortium (Ashburner
et al., 2000). From this dataset, we constructed subsets

Table 4. Automatic IMM clustering results for datasets with outliers

Noise level Variance RAND No. of clusters

Low Averaged 0.78 13.4
Low Elliptical 0.99 7.6
Low Spherical 0.99 8
High Averaged 0.51 16.6
High Elliptical 0.97 13
High Spherical 0.89 8.8

with g = 1, 2 and 3 replicates by systematically sub-
setting g out of four replicated runs of the experiments.
This has resulted in four datasets with a single observa-
tion for each experimental condition, six datasets with two
experimental replicates per experimental condition and four
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Fig. 2. Clustering data with sporadic genes. (A) Adjusted RAND indices under different number of clusters for low-noise simulated data and
(B) high-noise simulated data.

datasets with three experimental replicates per experimental
condition.

For each subset of the data, we ran four independent Gibbs
samplers over a series of ‘stopping points’ and identified the
optimal ξmax by following the algorithm described in the previ-
ous section. Since the analysis of simulated data indicated that
the elliptical model is generally applicable even if the true cov-
ariance structure of experimental replicates is ‘spherical’, and
due to a high computational cost of identifying optimal stop-
ping points, we did not analyze this data under the ‘spherical’
model.

The IMM model for both ‘elliptical’ and averaged profiles
variants have shown again the most consistent and precise
results (Table 5). For each number of replicates, these two
models performed as well as or better than any other clus-
tering approach. As the number of replicates increased, the
precision of these two approaches increased as well. Other
methods that showed the same trend of consistently increas-
ing precision for the increasing number of replicates were our
versions of FMM models, MCLUST-based finite mixtures
and distance-based complete linkage and variance adjusted
hierarchical methods. However, all these methods showed
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Table 5. Galactose dataset analysis

Method Number of replicates
1 2 3 4

A

Heuristic methods
Average link; correlation 0.88 0.87 0.91 0.87
Average link; distance 0.67 0.90 0.92 0.86
Complete link; correlation 0.69 0.78 0.70 0.68
Complete link; distance 0.62 0.85 0.88 0.96
K-means; correlation 0.75 0.77 0.77 0.87
K-means; distance 0.86 0.92 0.91 0.86

SD-adjusted heuristic methods
Average link; correlation NA 0.68 0.82 0.82
Average link; distance NA 0.84 0.86 0.86
Complete link; correlation NA 0.52 0.67 0.72
Complete link; distance NA 0.83 0.96 0.97
K-means; correlation NA 0.63 0.75 0.64
K-means; distance NA 0.79 0.85 0.86

Model-based methods
IMM—elliptical 0.85 0.92 0.97 0.97
IMM—elliptical Auto 0.78 0.94 0.94 0.96
IMM—averaged 0.85 0.92 0.94 0.97
IMM—averaged Auto 0.78 0.93 0.96 0.96
FMM—elliptical 0.71 0.75 0.93 0.97
IMM—averaged 0.71 0.85 0.91 0.97
MCLUST-HC 0.68 0.90 0.96 0.97
MCLUST-FITTS 0.68 0.86 0.89 0.97

B

IMM—elliptical Auto 2.8 4.2 4.8 5.0
IMM—averaged Auto 2.8 4.7 4.5 5.0

(A) Average adjusted RAND indices. Highest average indices for the specific number
of replicates are in boldface and underlined. (B) Number of clusters for IMM models
with the automatic cluster creation.

significantly lower precision than IMM models in at least some
scenarios. The IMM model with the automatic choice of the
number of clusters in the data performed as well as any other
method with the specified number of clusters. Interestingly,
this model indicates that there are actually five clusters in the
data. Potential biological consequences of such an implication
need to be further investigated.

3.5 Correlated data, large datasets and different
cluster sizes

We simulated additional datasets to assess the performance of
Bayesian mixtures based clustering procedures on large data-
sets (10 000 ‘genes’), data with complex between-replicates
covariance structure and datasets with highly unbalanced
cluster sizes. Descriptions of the datasets and results are
given in the Web supplement. In these tests, the elliptical
IMM model with the automatic selection of the numbers of
clusters performed better than any other clustering method we
tested.

3.6 Computational complexity
Fitting mixture models via the Gibbs sampler is computa-
tionally expensive in terms of the CPU time. For a fixed
number of profiles to be clustered, the computational com-
plexity of the algorithm is approximately linear in the number
of clusters. For example, on a 3 GHz Pentium workstation,
for the 20-dimensional observation vectors, four replicates per
experiment, each Gibbs sampler’s cycle takes approximately
0.0015 s per gene in a 100-clusters FMM elliptical model and
about 0.00013 s per gene in a five-clusters model. This res-
ults in about 100 min run-time to fit the 100-clusters model
to the galactose dataset and about 9 min to fit the five-clusters
model. For the run-times and memory requirements on various
datasets and various models, see the Web supplement.

4 DISCUSSION
4.1 Choosing the right clustering procedure
After comparing various approaches on a series of simulated
and real-world datasets, it is our impression that the ‘ellipt-
ical’ IMM is the best candidate for a universally recommended
approach for clustering replicated microarray data. When
compared with the corresponding FMM model and other clus-
tering approaches, the IMM model performed equally well or
better on a wide range of simulated data and the galactose data-
set. Furthermore, IMM has a big advantage due to its ability
to automatically choose the appropriate number of clusters.
In many situations, the IMM with the automatic selection of
the number of clusters outperformed FMM models and all
heuristic methods that used the information about the correct
number of clusters in the data. This was somewhat surprising,
but it can be explained by the fact that although there exists an
underlying model with the correct number of clusters, the data
might be best explained with a different number of clusters,
and forcing the pre-specified number of clusters can distort
resulting clusters. Furthermore, in a ‘fuzzy’ situation when
more than one model offers a reasonable fit to data, aver-
aging over different models might improve the overall result.
When compared with the ‘averaged’ and the ‘spherical’ vari-
ance structure, the ‘elliptical’ model generally performed at
least as well or better than any other model. The only excep-
tion was the simulated ‘spherical’ wave data, in which the
spherical model performed slightly better. Altogether, when
in doubt about the correct covariance structure, the ‘elliptical’
model seems to be a natural choice among currently available
models.

4.2 Importance of replicating experiments
Results of our analysis clearly demonstrate the importance
of experimental replicates in the cluster analysis of micro-
array data. Even two experimental replicates can significantly
improve the precision of clustering results, both in terms of
adjusted RAND indices as well as in terms of the number
of clusters inferred by the statistical model. The Bayesian
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mixture models with ‘elliptical’ variance structure were par-
ticularly efficient in using additional information obtained by
replicating the experiment. Improvements in the precision
were the most dramatic in the ‘high-noise’ simulated data.
Generally, when comparing the performance of the models
with the ‘elliptical’ error model with the simple approach of
clustering averaged expression profiles, more dramatic dif-
ferences have been seen in the simulation study than in the
analysis of galactose data. The reason for such differences
probably lies in the fact that our simulated data represented the
extreme situation when all variability in the data is induced by
the between-replicates variations, which is likely to emphasize
the importance of modeling explicitly this variability instead
of assuming a uniform variance as the analysis of averaged
profiles implicitly assumes. This also suggests that the import-
ance of experimental replicates as well as the importance of
the precise modeling of between-replicates variability will be
more important in situations where this variability is expec-
ted to be high, such as when biological replicates are used
(Hatfield et al., 2003).

4.3 The Gibbs sampler, statistical significance
and future work

One of the conceptually appealing features of the IMM
approach is that it facilitates assessment of the statistical
significance of various clustering features after incorporat-
ing uncertainties related to choosing the correct number of
clusters. However, for such assessments to be unbiased, the
Gibbs sampler needs to have good ‘mixing’ properties. That
is, it needs to be capable of generating samples from different
regions of the probability space in proportion to their posterior
probabilities within the specified sample size. When the pos-
terior probability distribution is multi-modal, as was the case
in many of our datasets, this will generally not be the case.
While our heuristic modifications did manage to correct the
mixing properties of the sampler with respect to obtaining
the optimal clustering, the distribution approximated by the
sampler is not any more described by our hierarchical model.
Improving mixing properties of the sampler remains one of
the priorities in the development of IMM models.

Finally, summarizing the posterior distribution generated
by the Gibbs sampler is not trivial in the context of Bayesian
mixtures mainly due to the ‘label switching’ problem (Celeux
et al., 2000). Reducing the full posterior distribution of cluster-
ings to pair-wise probabilities of co-expression as described
here effectively circumvents the issue of ‘label switching’.
‘Similarity matrices’ consisting of pair-wise posterior prob-
abilities can be used to both create clusters and compare
posterior clustering distributions from different runs of the
Gibbs sampler. Still, reducing the full posterior distribution
of clusterings to pair-wise probabilities of co-expression will
result in loss of information, and the applicability of the
re-labeling approaches (Celeux et al., 2000) in the context
of infinite mixtures seem to be worth exploring.
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