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Expression data generated by DNA arrays incorporates different sources of variability present in the 
process of obtaining fluorescence intensity measurements.  When examining expression profiles of 
thousands of genes at once, certain groups of genes will exhibit some level of similarity purely due to 
chance.  Such spurious results are almost inevitable unless a proper statistical model is applied to assess 
the statistical significance of the observed patterns.  Assessing statistical significance of observed 
expression patterns means determining the level of similarity that is unlikely to be the result of random 
fluctuations in observed data. 

Suppose that T gene expression profiles were observed across M experimental conditions.  If xki is 
the differential expression of the ith gene for the kth experimental condition, then xi=(x1i, x2i,…, xMi) 
denotes the complete expression profile for the ith gene.  All gene expression profiles can be viewed as 
being generated by Q<T underlying expression “patterns.”  Expression profiles generated by the same 
pattern form a cluster of similar expression profiles.  If ci is the classification variable indicating the 
cluster to which the ith expression profile belongs (ci=k means that the ith expression profile belongs to 
the kth cluster), then a “clustering” is defined by a set of classification variables for all expression 
profiles c=(c1, c2,…, cT).  The values of classification variables are meaningful only to the extend that all 
observed expression profiles having the same value for their classification variable form a cluster.  In 
our probabilistic model, expression profiles that cluster together are assumed to be generated by a single 
Multivariate Normal random variable.  Parameters of this random variable describe a “pattern” that 
generates corresponding cluster of expression profiles. We developed a statistical procedure based on 
the Bayesian Infinite Mixture model in which conclusions about the probability of a set of profiles being 
generated by the same pattern are based on the posterior probability distribution of clusterings given the 
data p(c |x1,…,xT). 

The following hierarchical model defines the stochastic procedure that is assumed to generate gene 
expression profiles.  This model implicitly defines the posterior distribution of the classification set c 
and consequently of the number of clusters (patterns) in the data Q. 
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In equations above, p(x | θθθθ) denotes the marginal probability distribution function of x given 
parameters θθθθ;  fN, fG and fD represent probability density functions of Multivariate Normal, Gamma, and 
Dirichlet random variables respectively and I(ci=j)=1 whenever ci=j and it is 0 otherwise.  This model is 
a multivariate extension of the previously described univariate Bayesian Infinite Mixture model (1) and 
it represents the starting point in this project.  Currently we are experimenting with different 
generalizations and extensions of this model including a more general covariance structure, adding 
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additional levels of variability, putting a prior distribution on the α parameter, etc.  As Q approaches 
infinity, this model is a special case of the general Dirichlet Process Prior Mixture model (2). 

The goal of the statistical analysis based on this model is to approximate the joint posterior 
distribution of classification vectors given data, p(c | x1,…,xT), which is implicitly specified by this 
hierarchical model but can not written in the closed form.  However, it can be shown (2) that the 
posterior marginal distribution of classification variables when Q approaches infinity is fully specified 
by following two equations:  
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where, n-i,c is the number of expression profiles classified in c, not counting the ith profile, c-i is the 
classification vector for all except the ith profile. 

Posterior marginal distributions for other model parameters are given in the following two equations 
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Gibbs sampler (3) is a general procedure for sampling observations from multivariate distributions.  
It proceeds by iteratively drawing observations from marginal distributions of all components.  Under 
mild condition, the distribution of generated multivariate observations converges to the target 
distribution.  The Gibbs sampler for generating sequence of clusterings c1, c2, c3,…, cG proceeds as 
follows 

Initialization phase: The algorithm is started by assuming that all profiles are clustered together.  That is 
c0 is initialized as: 

1c...cc 0
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Consequently, Q0 is set to one.  Corresponding pattern parameters µµµµ1 and σ2
1are generated as 

random samples from their prior distributions (III) and (IV) respectively. 

Iterations: Given parameters after the kth step (ck, Qk, µµµµ1,…,µµµµQk, σ2), the k+1st set of parameters is 
generated by first updating classification variables, that is drawing ck+1 according to (VI) and (VI).  
Given that, new µµµµ1,…,µµµµQk and σ2 are generated according to (VIII) and (XIX).  Whenever the 
number of profiles in a cluster falls to zero, the cluster is removed from the list.  A new cluster is 
created whenever a ci≠cj for all i≠j is selected. 
It can be shown (2) that this algorithm, in the limit, generates clusterings from the desired posterior 

distribution of clusterings.  Therefore it can be assumed that the empirical distribution of generated 
clusterings cG, cG+1,…, after G “burn-in” samples, approximates the true posterior distribution of 
clusterings.  Groups of genes that had common assignments in a large proportion of generated 
clusterings are likely to have been generated by the same underlying pattern.  That is, the proportion of 
clusterings in which a group of genes had common assignments approximates the probability that they 
are generated by the same underlying pattern.  
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Preliminary results 
The power of this procedure to detect statistically significant patterns is illustrated by the analysis of 

α factor-based synchronization cell-cycle data (a subset of the whole cell-cycle data set).  Only profiles 
of genes that were two-fold induced or repressed in for at least one time point, and had valid 
observations at all time points were used in this preliminary analysis.  Expression profiles of 433 genes 
satisfied both of these conditions.  In this analysis we looked for highly specific patterns of expression 
even if represented by two genes.  A cluster of expression profiles was considered to be generated by the 
same pattern if its elements clustered together in at least 70% of 90,000 clusterings generated by the 
Gibbs sampler after 10,000 burn-in cycles.  Several clusters implicated at this level of significance are 
shown in Figure 1.  A striking feature of most of the identified clusters is the genomic proximity of 
ORF’s represented.  It is possible that some of these similarities are due to the fact that spotted clones 
represent the same gene.  Currently, we are assessing the significance of observed similarities and 
analyzing the complete cell-cycle data set. 

Figure 1 
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The flexibility of this approach to clustering is enormous.  By using a specific covariance structure it 

is possible to assess more subtle relationships between profiles within the same clusters as well as 
between different clusters.  Finally, the Gibbs sampler described here can be easily modified to handle 
incomplete profiles (profiles missing some data points) by imputing missing data. 
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