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ABSTRACT 
Motivation:   Identifying groups of co-regulated genes by monitoring 
their expression over various experimental conditions is complicated 
by the fact that such co-regulation is condition-specific. Ignoring the 
context-specific nature of co-regulation significantly reduces the 
ability of clustering procedures to detect co-expressed genes due to 
additional “noise” introduced by non-informative measurements. 
Results:  We have developed a novel Bayesian hierarchical model 
and corresponding computational algorithms for clustering gene 
expression profiles across diverse experimental conditions and stud-
ies that accounts for context-specificity of gene expression patterns. 
The model is based on the Bayesian infinite mixtures framework and 
does not require a priori specification of the number of clusters. We 
demonstrate that explicit modeling of context-specificity results in 
increased accuracy of the cluster analysis by examining the specific-
ity and sensitivity of clusters in microarray data. We also demon-
strate that probabilities of co-expression derived from the posterior 
distribution of clusterings are valid estimates of statistical signifi-
cance of created clusters. 
Availability: The open-source package gimm is available at 
http://eh3.uc.edu/gimm. 
Contact: Mario.Medvedovic@uc.edu 
Supplementary information: http://eh3.uc.edu/gimm/csimm 

1 INTRODUCTION  
Identifying and interpreting gene expression patterns and charac-
terizing groups of co-expressed genes defining these patterns 
through cluster analysis has been a productive approach to learning 
from DNA microarray data. The results of such analyses have 
served to dissect regulatory mechanisms underlying co-expression, 
identify pathways involved in biological processes and annotate 
gene function. The quality of these results and conclusions is di-
rectly dependent on the quality of the clustering procedure used in 
the analysis. Since the advent of the microarray technology, virtu-
ally all traditional clustering approaches have been applied in this 
context and numerous new approaches have been developed 
(Yeung and Bumgarner 2004).  To identify subsets of co-expressed 
genes, most clustering procedures depend on either a visual identi-
fication clusters from patterns  in a color-coded display (such as 
hierarchical clustering) or on the correct specification of the num-
ber of patterns present in data prior to the analysis (k-means and 
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Self Organizing Maps). The most commonly used clustering pro-
cedures are ad-hoc by nature and incapable of separating statisti-
cally significant clusters from artifacts of random fluctuations in 
the data. On the other hand, clustering approaches based on the 
statistical modeling of the data often require the number of clusters 
to be specified in advance (Barash and Friedman 2002; McLachlan 
et al. 2002; Segal et al. 2003). When the “correct” number of clus-
ters is estimated from the data, traditional methods fail to account 
for this significant source of variability in assessing the statistical 
significance of detected patterns (Medvedovic and Guo 2004).  

Assessing the function of a gene product is a multidimensional 
endeavor whereby one may ascertain a number of properties in-
cluding structure, the low-level function of a protein (i.e. kinase, 
protease, etc), and a higher level function describing the biological 
processes in which the protein participates. Identification of groups 
of co-expressed genes across diverse microarray datasets is a very 
promising strategy for assessing higher-level function of gene 
products. Such analysis is complicated by the fact that co-
regulation is often condition-specific and may not extend across all 
conditions. The problem of context-specificity can be particularly 
pronounced when combining gene expression profiles across dif-
ferent experiments, tissue types or even different organisms to 
perform “meta-cluster analysis” (Segal et al. 2004; Segal et al. 
2003; Stuart et al. 2003). In these situations, measurements of 
genes’ expression under all conditions are not necessarily informa-
tive with regards to their co-regulation. Ignoring the local nature of 
co-regulation significantly reduces one’s ability to detect co-
regulated genes due to the noise introduced by non-informative 
measurements. Previously proposed solutions to this problem in 
terms of the context-specific Bayesian networks (Barash and 
Friedman 2002) and more general module networks (Segal et al. 
2003) rely on the specification or estimation of the “correct” num-
ber of patterns. In these respects, they suffer from the same prob-
lems related to the estimation of the “correct” number of patterns 
in the finite mixture based clustering. 

We developed a context-specific infinite mixture model 
(CSIMM) to allow clusters of co-expressed genes to be further 
grouped locally on subsets of experimental conditions that do not 
contribute any information about their differences. This approach 
makes use of the Bayesian infinite mixture framework 
(Medvedovic et al. 2004; Medvedovic and Sivaganesan 2002) to 
circumvent the issue of identifying the “correct” number of global 
and local patterns in the data. Infinite mixtures are one possible 
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parametrization of semi-parametric Bayesian models with Dirichlet 
process priors (Neal, 2000) and the CSIMM described here can be 
thought of as a hierarchical Dirichlet process.  Infinite mixtures 
framework facilitates averaging over models with different num-
bers of patterns, and the posterior distribution of clusterings incor-
porates uncertainties related to not knowing the “correct” number 
of clusters, either globally or locally. Consequently, the resulting 
posterior probabilities of co-expression offer a reliable assessment 
of the statistical significance of the groupings. We demonstrate the 
ability of the procedure to integrate information from diverse mi-
croarray experiments through a simulation study and by assessing 
the performance of algorithms in the context of functional annota-
tion of genes based on their co-expression.  

2 METHODS 

2.1 Motivation 
Our goal is to identify clusters of genes exhibiting similar expres-
sion patterns across multiple microarray datasets. Each data set or 
“context” consists of a number of closely related microarray ex-
periments that share a biological relationship and sample a limited 
range of perturbations to the system under study. For example, one 
data set may consist of measurements of gene expression at differ-
ent time points after heat shock, while another may consists of 
measurements at different stages of the cell cycle.  For the sake of 
discussion, we will refer to each data set as a “context” the entire 
collection of datasets as the “global” dataset. 

Fig. 1.  Simple “context-specificity” of expression patterns 

It is reasonable to assume that different regulatory programs are 
employed by different biological processes and that specific sub-
sets of regulatory programs are needed to respond to a given type 
of perturbation. Some regulatory programs will respond to all the 
perturbations available within the global dataset while others will 
respond to none, one or a limited number of perturbations.   That 
is, some genes will be co-regulated on a global scale, while others 
(perhaps most) will be co-regulated on a local scale. We define a 
global clustering structure on a set of gene expression profiles by 
saying that two genes belong to the same global clusters share a 
common pattern of expression in all of the examined datasets. On 
the other hand, we define a local clustering structure as groups of 
genes that share a common expression pattern within a subset (a 
context) of the data but which do not group together when exam-
ined globally.  

Figure 1 shows an example of the type of structure we might 
reasonably expect within gene expression data and the information 
(groupings) we would like to recover. For clarity, the example 
provided is overly simplified. It shows only three data sets (con-
texts), 20 genes, 4 global clusters and two local clusters within 
each context. Expression level is either high (coded light gray) or 
low (black). Local clusters within each context consist of genes 
that are either high or low within this context. For example, global 
Cluster1 is formed of genes that are high within Context 1 and low 
within Contexts 2 and 3.  On the other hand, Context 1 does not 
contribute any information about differences between global Clus-
ters 1 and 4. We wish to be able to separate patterns in such global 
clusters even in the presence of data from many other “noisy” or 
non-informative contexts. We construct a Bayesian hierarchical 
model that describes the probability distribution of the data so that 
local and global clusters can be identified.  

2.2 Context Specific Infinite Mixture Model (CSIMM)  
Suppose that expression was measured for T genes across M 

experimental conditions. If xij is the expression level of the ith gene 
for the jth experimental condition, then xi=(xi1, xi2,…, xiM) denotes 
the complete expression profile for the ith gene. Each gene expres-
sion profile can be viewed as being generated by one out of Q 
different underlying expression patterns. Expression profiles gen-
erated by the same pattern form a cluster of similar expression 
profiles. If ci is the classification variable indicating the pattern that 
generates the ith expression profile (ci=q means that the ith expres-
sion profile was generated by the qth pattern), then a clustering is 
defined by a set of classification variables for all gene expression 
profiles C=(c1, c2,…, cT). In our model, the qth “pattern” is repre-
sented by the mean vector of the M-dimensional Gaussian distribu-
tion µq=(µq1,…, µqM). Profiles clustering together (i.e. belong to 
the same pattern) are assumed to be a random sample from the 
same multivariate Gaussian distribution. That is, ci=q implies that 
xi ~ NM(µq,Σq), where Σq is the variance-covariance matrix of the 
M-dimensional multivariate Gaussian distribution.  

Suppose further that each gene profile is partitioned into R sub-
profiles. Without loss of generality we can assume that the first r1 
experimental conditions form the first sub-profile, experimental 
conditions r1+1 to r1+r2 form the second sub-profile, etc.  That is 
xi=(xi

1,…,xi
R) where xi

j= )x,....,(x
jjj rr' i1r' i ++  and r’j=r1+…+rj-1.  

The two most extreme cases are when R=M and R=1.  The case of 
R=1 is equivalent to the simple clustering in which the context 
structure is not defined. The case when R=M represents the situa-
tion when each microarray hybridization represents a separate 
context. The local structure of the co-expression patterns is speci-
fied by the Q by R matrix L=(Lqf), where Lqf=t if global cluster q is 
placed in local cluster t within context f. Thus, within each context, 
we create a group of “locally” indistinguishable global clusters. All 
gene expression profiles contained in global clusters that are indis-
tinguishable within a context form a local cluster of genes which 
are co-expressed within this context.  

The joint posterior distribution of all parameters in the model, 
including the global and local clustering variables C and L, given 
data is estimated using the Gibbs sampler (Gelfand and Smith 
1990). The clusters of globally and locally co-expressed genes are 
formed based on the marginal posterior distributions of the classi-
fication variables C and L. Summarizing the sample of “cluster-
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ings” generated by the Gibbs sampler in mixture models is gener-
ally a non-trivial problem. We circumvent this problem by calcu-
lating posterior pairwise probabilities (PPPs) of co-expression for 
genes i and j as the proportion of the samples in which these two 
genes are clustered together (Medvedovic and Sivaganesan 2002). 
We then use these probabilities as the similarity measure to hierar-
chically cluster gene expression profiles by applying the average 
linkage principle. The mathematical specification of the model 
describing the distribution of the data and the specifics of the 
Gibbs sampler are given in the Appendix. All conditional probabil-
ity distributions needed to run the Gibbs sampler are given in the 
Supplemental Materials.  

2.3 Implementation 
Computational procedures for performing CSIMM-based cluster-
ing are implemented in a standalone package gimm. The package 
consists of C++ code, simple Java-based gui and installation 
scripts, and it is available for both Linux/Unix and Windows plat-
forms. The Windows version is available as a self-installing pack-
age. The software generates .cdt and .gtr files defining the hierar-
chical clustering that can be viewed and analyzed using the tree-
view program (Eisen et al. 1998). The Linux C++ code is designed 
to exploit the OpenMP parallelization when appropriate compiler 
is installed. For Linux, we also developed the R package “wrap-
per” that facilitates using gimm within R. All packages and the 
source code can be freely downloaded from 
http://eh3.uc.edu/gimm. We discuss the computational complexity 
of the algorithm in the Web Supplement. 

3 RESULTS 
3.1 Simulation Study 
The study was designed to compare different clustering procedures 
based on their ability to correctly separate simulated expression 
profiles into different clusters in repeated experiments. The prob-
lem is treated in the traditional statistical hypothesis-testing 
framework of assessing the probability that a procedure will cor-
rectly conclude that two expression profiles are generated by dis-
tinct patterns of expression (i.e. belong to two different clusters) 
while controlling the probability of falsely concluding that two 
profiles belong to different clusters when they are actually gener-
ated by the same pattern. Unlike traditional statistical hypothesis 
testing procedure, we do not supply the labels for profiles that are 
being compared. We simulated data representing the structure 
depicted in Figure 1 where the heat map was taken to represent the 
values of the mean expression profiles in the corresponding cluster. 
“Low expression levels” (black) were set to 0 and the “high ex-
pression levels” (gray) were set to 1. For example, in each dataset, 
profile “g1” was randomly drawn from the 15-dimensional Gaus-
sian random distribution whose mean vector is equal to 1 in first 5 
dimensions (e1,…,e5) and 0 in other 10 dimensions (e6,…,e15). 
Data was simulated for different level of noise (σ). The selected 
range of random noise allowed us to assess the performance of 
different approaches in easy and progressively more difficult (i.e. 
noisier) situations. 100 datasets were generated for each noise 
level. 

We are focusing on the ability of a method to separate profiles 
in Cluster1 from profiles in Cluster2. This is the most difficult 
aspect of the analysis since Cluster1 has only two profiles and 

differs from Cluster2 only on 5 out of 15 “experimental condi-
tions”. Methods are tested based on their ability to correctly con-
clude that profiles in Cluster1 are different from profiles with Clus-
ter2. In a sense we are assessing the power of clustering procedures 
to conclude that profiles in Cluster1 are different from profiles in 
Cluster2. If we knew which profiles came from which cluster, we 
could perform a simple test of hypothesis to decide one way or 
another. In the unsupervised situation, we do not supply the mem-
bership but the goal is still the same. The performance of different 
clustering procedures was assessed by constructing Receiver Oper-
ating Characteristic (ROC) curves that relate the probability of the 
clustering method to correctly separate profiles from different clus-
ters and the probability of incorrectly separating profiles from the 
same clusters. 

Fig. 2.  ROC curves for different clustering approaches 

Let X be the posterior probability cut-off for separating profiles 
in Cluster1 from Cluster2. For a fixed cut-off point X, we consider 
that the clustering procedure is correctly concluding that a profile 
from Cluster1 does not belong to Cluster2 if its posterior pairwise 
probability of co-clustering with any single profile from Cluster2 is 
less than X. That is, max{p(ci=cj for all profiles j from Clus-
ter2}<X, where p(ci=cj) denotes the posterior pairwise probability 
of co-expression for profiles i and j. We consider that the cluster-
ing procedure is incorrectly concluding that profile 1 and profile 2 
from Cluster1 do not belong in the same cluster if p(c1=c2)<X. The 
true positive rate (TPR) is the proportion of times that a correct 
decision is made and the false positive rate (FPR) is the proportion 
of times that an incorrect decision is made. As the cut-off X is 
increased from 0 to 1, both TPR and the FPR will increase. The 
area under the curve relating the TPR and FPR as X is increased 
from 0 to 1 describes the efficiency of a statistical procedure with 
the random decision-making having an area of 0.5 while the ideal 
statistical procedure would have an area equal to 1. ROC curves in 
Figure 2 indicate that context-specific infinite mixtures model 
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significantly outperforms simple mixture model in its ability to 
separate different patterns of expression while controlling the false 
positive rates. The difference between the simple infinite mixture 
and context-specific infinite mixtures is clearly due to the better 
representation of the underlying patterns offered by the context-
specific model. Furthermore, over- and under-fitting the data by 
specifying too many or too few context has the expected conse-
quences on the clustering results (Figure S1 in the Supplement). 
When placing each experiment in separate context (over-fitting), 
the performance is actually worse than for the simple model. Fail-
ing to specify all contexts (two out of three) causes a reduction in 
the performance of the context-specific model, but it still outper-
forms the simple model. 
Posterior pairwise probabilities are valid measures of statisti-
cal significance: In Figure 3 we plotted observed false positive 
rates against corresponding statistical significance levels from the 
CSIMM analysis. Given a significance level α, all gene-pairs 
whose PPP was lower than α were assumed to belong to different 
clusters. As the empirical false positive rates are always less than 
α, we conclude that PPPs based on CSIMM are valid measures of 
statistical significance at all noise level. This is also true for the 
simple IMM, but not for the finite mixtures model (Figure S2 in 
the Supplement). Additionally we performed similar analysis on 
100 data sets in which all data points were generated from the sin-
gle probability distribution representing the situations when there 
is no clustering structure in the data (Random). As it can be seen 
from the virtually perfect 45 degrees line, PPPs correctly protect 
against Type I errors when there are no patterns in the data. 

Fig. 3.  Posterior probabilities as measures of statistical significance. The 
“Random” scenario correspond to the situation in which all profiles were 
generated by the same multivariate normal probability distribution.   

3.2 Yeast cell-cycle and sporulation data 
Comparing the performance of different clustering procedures on 
the real-world data is complicated by the lack of a gold-standard 
(i.e. the “correct clustering”). We assessed our clustering results by 
forming functional groupings of genes based on the information 
available in the KEGG database of biological pathways (Kanehisa 
et al. 2004). The strength of association between such functional 
clusters and clusters of co-expressed genes formed by a clustering 

procedure was interpreted as the measure of the precision for a 
clustering procedure.  
We constructed the test dataset by combining two microarray ex-
periments assessing two distinct yet related biological processes. 
The first dataset is the yeast sporulation dataset (Primig et al. 2000) 
consisting of gene expression measurements at 8 and 7 time points 
throughout the sporulation process for two sporulation-competent 
yeast strains SK1 and W303 respectively. The second dataset is the 
cell-cycle (Cho et al. 1998) dataset consisting of gene expression 
measurements at 17 time-points spanning two complete yeast cell 
cycles. The two data sets were matched by identifying 6044 ORFs 
represented on both of the two versions of the Affymetrix microar-
rays used in these experiments. Data was mildly processed by set-
ting any measurement below 1 to 1, log-transforming it and center-
ing each gene’s expression profile around zero for the two experi-
ments separately. Genes which never reached the signal of 100 
were excluded from the analysis resulting in the total of 5685 
genes remaining. 1044 ORFs represented genes associated with at 
least one KEGG pathway.  

Fig. 4.  ROC curves comparing the performance of different clustering 
approaches on the joint sporulation and cell cycle dataset. A) The curve 
relating true positive and false positive rates. B) The curve relating actual 
numbers of true positive and false positive pairs of co-clustered genes. 
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Data from the two experiments was clustered separately and 
jointly using the simple IMM approach, CSIMM and Euclidean 
distance-based hierarchical clustering (EDHC). For each hierarchi-
cal clustering, the tree was cut to create 1 to 5685 clusters. For a 
fixed number of clusters a pair of genes (from the 1044 genes as-
signed to at least one pathway) belonging to the same cluster was 
assumed to be a “true positive” if the two genes both belonged to 
at least one specific KEGG pathway, and it was considered to be a 
“false positive” if they did not share a single KEGG pathway. True 
and false positive rates were then obtained by dividing the number 
of true/false positives with the total number of gene pairs sharing a 
common KEGG pathway and total number of gene pairs not shar-
ing a KEGG pathway respectively. When all genes are placed in 
their own individual clusters (5685 clusters), both true and false 
positive rates are equal to zero. As we reduce the number of clus-
ters, both true and false positive rates increase defining a ROC 
curve. At the extreme when all genes are placed in the same clus-
ter, both true and false positive rates are equal to one. ROC curves  

Fig. 5.  Gene expression levels (green-red heat map) and KEGG pathways 
memberships (blue heat-map) for 54 genes which were co-clustered with at 
least one other gene after cutting CSIMM-based tree at the average linkage 
distance of 0.05. 

derived in such a way for each dataset/method combination for 

the statistically relevant false-positive rates (less than 0.05) are 
shown in Figure 4A. The global clustering methods, IMM and 
EDHC, both performed worse for the joint data analysis than using 
the cell-cycle data alone. The ROC curve for the CSIMM indicated 
that this method was able to integrate information from both data-
sets into a single more precise analysis. The behavior of the “over-
fitted” model in which each microarray is treated as a separate 
context is inline with the behavior observed in the analysis of 
simulated data. 

Due to the strong imbalance between the total number of posi-
tive pairs 30,336 and negative pairs 513,067, a relatively low FPR 
still results in a large number of false positive pairs in comparison 
to the number of true positive pairs. Therefore, we examined more 
closely the behavior of different clustering procedures by relating 
the absolute number of false and true positive pairs of genes (Fig-
ure 4B). The improvements in precision of the CSIMM over com-
peting approaches when looking at this outcome for less then 10 
false positive pairs is dramatic.  

Clusters of co-expressed genes at the highest ratio of true to 
false positives (191.6 with 5 false and 958 true positive pairs) 
along with corresponding KEGG pathways are displayed in Figure 
5. The highest ratio of true to false positive was achieved when 
cutting the tree at the average linkage distance of 0.05. Genes were 
included in the heat map if they were assigned to at least one 
KEGG pathway and were co-clustered with at least one other gene 
from KEGG. The KEGG pathways implicated by these patterns are 
clearly related to the biologic processes under investigation (sporu-
lation and cell cycle). Although our “gold standard” based on 
KEGG implicated 5 false positive pairs, a closer examination of 
the genes in two clusters on the top of the heat map (RNR1, 
MCD1, POL1, CDC45 and POL12) reveals that the activity of all 
these genes is tightly regulated during the DNA replication proc-
ess. This indicates that at this level of resolution, CSIMM creates 
“perfect” groupings of functionally related genes from KEGG. 
Interestingly, context-specific model for the cell-cycle data, in 
which gene expression profiles are split in two distinct cell-cycles 
performed better than the simple model when analyzing the cell-
cycle data alone (Figure S3 in the supplement). This could be a 
consequence of issues previously raised about the synchronization 
of cells in different microarray experiments characterizing gene 
expression signatures of cell cycle (Cooper and Shedden 2003). 

We examined broader patterns of expression implicated at this 
level of significance by clustering all 135 genes that were co-
clustered with at least one other gene after cutting the tree at the 
average linkage distance of 0.05 regardless of their KEGG mem-
bership (Figure S4 in the supplement). In addition to KEGG path-
way memberships, we examined correlations of the clusters gener-
ated by CSIMM with transcription factors shown to bind their 
promoters in “Chip-on-Chip” experiments (Lee et al. 2002). The 
hierarchical tree in Figure S4 was cut in 8 clusters. Six of these 
clusters had more than two genes and they were tested for over-
represen tation of genes whose promoters are substrates of any one 
single transcription factor using the Fisher’s exact test. Eight tran-
scription factors were significantly associated with at least one of 
the cluster and their functional roles are closely related to the bio-
logical processes examined, as well as the KEGG pathway associa-
tions, landing additional credibility to the clusters identified by 
CSIMM. In comparison, cutting the tree formed by the Euclidian-
distance based hierarchical clustering to obtain 135 genes that were 
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co-clustered with at least one other gene generated diffused pat-
terns without any obvious clustering structure (Figure S5 in the 
supplement). Separate analyses of cell-cycle and sporulation data 
offered similar picture (Figures S6, S7, S8, S9 in the supplement).   

Fig. 6.  Empirical false discovery rate as a function of the average linkage 
distance used to cut the CSIMM-based hierarchical clustering tree. 

Finally, we investigated the validity of PPP-derived significance 
levels in deciding which clusters of genes are statistically signifi-
cant. This was assessed by examining the proportion of false posi-
tive co-clusterings in clusters obtained by “cutting” the hierarchical 
tree at different levels of average-linkage distances derived from 
posterior pairwise probabilities of co-expression. If the tree was cut 
at the similarity level d, the average PPP between each gene in a 
cluster and all other genes in the same cluster is greater than (1-d). 
In the same time the false discovery rates (FDR) are calculated as 
the proportion of implicated pairs of co-expressed genes when the 
tree is cut at the average-linkage distance d which also shared at 
least one KEGG pathway out of all pairs implicated. Plotting the 
false discovery rates against different d’s (Figure 6) indicates that 
d’s very well approximate the empirical false discovery rates. 

4 DISCUSSION 
The most important distinguishing feature of the model de-

scribed here lies in its ability to circumvent the difficult problem of 
identifying the “correct” number of local and/or global patterns in 
the data. Previously described context-specific models relied on 
different versions of penalized likelihood scores to estimate the 
“correct” number of patterns in the data. There are some obvious 
advantages of being able to identify the single most likely number 
of clusters. However we previously demonstrated that our model-
averaging results in more accurate analysis than the clustering 
procedure in which the “correct” number of clusters is estimated 
from data. Here we further demonstrate that posterior distribution 
of clusterings offers a credible assessment of statistical signifi-
cance of identified clusters and devise a practical approach for 
identifying statistically significant patterns in the data. This also 

simplifies the use of the model-based clustering since the whole 
procedure resembles simple hierarchical approaches.  

The notion of context specificity introduced in our model is dif-
ferent from the two previously proposed context-specificity defini-
tions. In the context-specific finite mixture model introduced by 
(Barash and Friedman 2002), all “uninformative” measurements 
within a context are placed into a single default cluster. CSIMM 
instead forms distinct groups of global clusters within each con-
text. The module-network described by (Segal et al. 2003) intro-
duces a notion of context-specificity in which contexts are defined 
differently for different clusters and the distribution of all meas-
urements within the same cluster and context are represented by 
the univariate Gaussian distribution. These two methods also fa-
cilitate estimation and modeling of the most likely context struc-
ture while CSIMM at this point requires context structure to be 
specified in advance. On the other hand, CSIMM uses globally 
defined contexts which are identical for all clusters, and the pat-
terns within different contexts are described by multivariate Gaus-
sian distributions. The distinction between univariate vs multivari-
ate definition of local patterns seems to be particularly important in 
the situations when distinct local clusters describe complex pat-
terns such as the time series or dose-response data.  
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The statistical model describing the distribution of the data is given 
in the form of a Bayesian hierarchical model (Gelman et al. 2003). 
Dependencies between various model parameters and the data are 
defined by the Directed Acyclic Network (Cowell et al. 1999) in 
Figure 7. Nodes in the network represent random variables and 
arcs define the independence structure of the joint probability dis-
tribution function.  Assuming that the probability distribution of 
any node is independent of its non-descendants if values of the 
parent nodes are given (Directed Markov Assumption), the joint 
probability distribution of all parameters and data is given by the 
product of the local probability distributions of individual random 
variables given their parents.  
p(X, C, L, M, M*, S, α, a, λ, τ, β, φ) =  
 p(X| C, M, S)p(C|α)p(M|L,M*)p(S|β, φ) 
               p(L|C,a)p(M*|λ, τ)p(α)p(a)p(λ)p(τ)p(β)p(φ) 
M={µ1,…,µQ} is the set of all mean vectors associated with Q 
global patterns, S={Σ1,…,ΣQ} is the set of corresponding variance-
covariance matrices, M*= )},....,(),...,,....,{( *

RK
*

R 1
*

1K
*
1 1 R1

µµµµ  is 

the set of all local mean vectors, S*= },...,{ **
1 RΣΣ  is the set of cor-

responding variance-covariance matrices and Kf is the number of 
local groupings of global clusters within context f. α, a, λ, τ, β and 
φ are hyperparameters for C, L, M*, and S respectively. The prob-
ability distribution of the expression data vector for gene i, given 
its classification variable ci, global means M and the variance-
covariance matrices S is  

)Σ, |  (),  q,c|  ( qqiii µxSMx Nfp == , 

where fN(.|µ,Σ) is the multivariate Gaussian probability distribution 
function with mean µ and variance-covariance matrix Σ. All vari-
ance-covariance matrices in the model are context-specific and 
diagonal. That is Σq is the block diagonal matrix with context-
specific diagonal matrices I2

tfσ  on the diagonal. 
 

Fig. 7.  Context-specific infinite mixtures 

The probability distribution of the global mean vector µq, given the 
local structure L and the local parameters M* and S* is 

), | ()..., | (), | (       
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p
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where µqf is the subvector of the global mean µq on the fth context. 

Prior distributions for the local groupings L are defined following 
the infinite mixtures approach that avoids the specification of the 
“correct” number of groups of local clusters for each context 
(Medvedovic et al. 2004; Medvedovic and Sivaganesan 2002). The 
probability of assigning the global cluster q to an already existing 
group of clusters t within the context f, given C and a, is given 

by
a1-Q

n
   )a,C|tL( qft-

qf +
∝=p , t=1,..,Q, where n-qft is the number of 

global clusters currently placed in local cluster t within context f 
without counting global cluster q. The probability of assigning a 
global cluster to a new local group is given 

by
a1-Q

a
  )a,C|qq',LL( fq'qf +
∝≠∀≠p . The rest of the local condi-

tional probability distributions, the structure of variance-
covariance matrices and hyperparameters are stated in the supple-
mental material. 
The joint posterior distribution of all parameters in the model given 
data is estimated using Gibbs sampler. Gibbs sampler (Gelfand and 
Smith 1990) is a general procedure for sampling observations from 
a multivariate distribution.  It proceeds by iteratively drawing ob-
servations from complete conditional distributions of all compo-
nents given the current values of all other components.  Under mild 
condition, the distribution of generated multivariate observations 
converges to the target multivariate distribution. The Gibbs sam-
pler employed here is derived from previously described algo-
rithms for fitting infinite mixture models. Conditional posterior 
distributions for M, M*, and L are derived assuming that 

I2)σ( *
q

*
f =Σ  and by letting σf

*→0 within all contexts.  This effec-

tively forces all global cluster means grouped together within a 
context to be identical within this context. Consequently, instead of 
estimating means and variances for each of the Q global clusters 
within each context f, we estimate only Kf<Q local parameters.  
The posterior distributions for the local classification variables, 
conditional on all other parameters in the model are: 

)
n
σ,| (

a1-Q
n

   )a,,|tL(
q

2
tf*

tf
q
f

qft-
qf IµxXC Nfp

+
∝=   

)σ,d )
n
σ

,   
n
σ

,  | (
a1-Q

a  )a,C|qq',LL( 2
tf

*
tf

q

2
tf*

ft
q

2
tf*

tf
q
ffq'qf µ (µ( I)µx∫+

∝≠∀≠ pfp N , 

where 
q
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f
i

q
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i

∑
=

=

x
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All other conditional posterior distributions are similar to the sim-
ple infinite mixture models (Medvedovic et al. 2004; Medvedovic 
and Sivaganesan 2002) and are given in the web supplement. The 
Gibbs sampler is initialized sampling all model parameters from 
their respective prior distributions, and placing all global gene 
expression profiles into a single cluster. The Gibbs sampler pro-
ceeds to sample first global clusters, then local groupings of global 
clusters within each context and then the rest of the parameters in 
the model. To alleviate the problem of “slow mixing”, we apply 
heuristic annealing adjustment described in the Web Supplement. 
Previously, we demonstrated that such modifications preserve the 
topology of the posterior distribution of clusterings (Medvedovic et 
al. 2004). 
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