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We have analyzed a set of 39 mutational spectra of the supF gene that were generated
by differentmutagenicagentsand underdifferentexperimentalconditions.The clusteranal-
yses was performed using a newly developedclusteringprocedure.The clustering criterion
used in the procedure was developed by applying the classi� cation likelihood approach to
multinomial observations.We also developed a Gibbs sampling-basedoptimizationproce-
dure that outperformed previously developed methods in a comparative simulation study.
The results of the cluster analysis showed that our clusteringprocedurewas able to recreate
natural grouping of the mutational spectra with respect to the characteristicsof mutagenic
agents used to generate them and with respect to experimental conditions applied in the
process of generating spectra. These results are an important con� rmation of the relevance
of mutational spectra in characterizingmutagenic mechanisms of different carcinogens.
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1. INTRODUCTION

Characterizing mutagenic mechanisms of different carcinogens is one of the greatest
challengesof modern toxicology.Oneof the general approaches to studyingthe mutagenesis
of different agents relies on examining the type and the distribution of mutations induced
in a target gene by speci� c mutagenic treatments. In such experiments, the stretch of DNA
containing the target gene is � rst exposed to a mutagenic treatment that will cause certain
types of premutagenic lesions to form. In the second step, such treated DNA is introduced
into a selected cell line where some of the lesions induced in the � rst step will cause

Mario Medvedovic is Senior Research Associate, Department of Environmental Health, University of Cincinnati
Medical Center, 3223 Eden Avenue, Cincinnati, OH 45267-0056(E-mail: medvedm@email.uc.edu). Paul Succop
is Associate Professor, Department of EnvironmentalHealth, University of Cincinnati. Rakesh Shukla is Professor,
Department of EnvironmentalHealth, UniversityofCincinnati.Kathleen Dixon is Associate Professor, Department
of Environmental Health, University of Cincinnati.

c* 2001 American Statistical Association and the International Biometric Society
Journal of Agricultural, Biological, and Environmental Statistics, Volume 6, Number 1, Pages 19–37

19



20 M. MEDVEDOVIC ET AL.

mutations to be generated during replication of the damaged DNA. The distribution of
induced point mutations within the target gene is referred to as the mutational spectrum of
the mutagenic agent used to cause the initial damage to DNA.

In numerous studies involving different mutagenic agents, it has been con� rmed that

different agents generally give rise to different mutational spectra. It is generally assumed
that the type and the distribution of initial lesions induced by a mutagen and characteristics
of replication and repair machinery present in the cell line used in the experiment are
both re� ected in the observed mutational spectrum. Hence, differences and similarities of
mutational spectra can be assumed to re� ect differences and similarities in the mechanisms
of action of corresponding mutagens and cell lines used in experiments.

One of the systems frequently used to study mechanisms of mutagenesis, developed
by Seidman, Dixon, Razzaque, Zagursky, and Berman (1985), uses the bacterial tyrosine

suppressor tRNA gene (supF) as the mutational target. We have collected and analyzed 39
published mutational spectra generated after treating the supF target gene with different
types of mutagens. Similarities and differences between different mutational spectra were
assessed using a newly developed clustering procedure. The goal was to con� rm that mu-
tational spectra contain suf� cient information on the type of initial damage to allow for
identifying groups of spectra generated by mutagens with similar mechanisms of action
and under similar experimental conditions. This was done by examining clusters of muta-
tional spectra generated by our clustering procedure. The optimal number of clusters was
selected based on the interpretability of observed clusters and the statistical signi� cance of

the comparison between the model with the optimal number of clusters and models with
fewer clusters (Aitkin, Anderson, and Hinde 1981).

The mutational spectrum observed in an experiment is characterized by counts of point
mutations observed at each of the positions (bases) in the target gene. If the target gene is
M bases long and yk denotes the number of point mutations observed at the kth position,
k = 1; . . . ; M , the mutational spectrum is de� ned by the vector y = (y1; . . . ; yM ).

The statistical model for mutational spectra has been described by Adams and Skopek
(1987). In their model, y is assumed to be an observation from a multinomial random
variable Y ¹ mult(p1; . . . ; pM ; N), where N = y1 + ¢ ¢ ¢ + yM and pk represents the

probability that an observed point mutation occurs at the kth position. In general, the goal
of the statistical analysis of such data is to make inferences about the parameters of the
distribution p = (p1; . . . ; pM ) based on the observed data y. Two mutational spectra,
generated by multinomial random variables with parameters p 1 and p 2, are considered to
be equal if p 1 = p 2. Otherwise, they are considered to be different. According to the model
we used for the cluster analysis, mutational spectra from a single cluster were generated by
multinomial distributions with the same probability vector.

The clustering procedure we used for clustering mutational spectra is based on the clas-

si� cation likelihoodas the clusteringcriterion (McLachlan and Basford 1987). Maximizing
the classi� cation likelihood criterion is generally a dif� cult discrete optimization problem.
Celleux and Govaert (1992) described a general maximization algorithm for this problem
that they called the classi� cation expectation maximization (CEM) algorithm. CEM is an
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iterative algorithm that will converge to the global solution of the maximization problem
if started from the initial values suf� ciently close to the global solution. Otherwise, it will
converge to a local maximum of the clustering criterion. Celleux and Govaert (1992) also
proposed two approaches to combining CEM with the stochastic expectation maximiza-

tion (SEM) algorithm in order to alleviate this problem. In our initial tests, none of these
three algorithms offered satisfactory results. Therefore, we also developed an algorithm for
maximizing the classi� cation likelihood based on the Gibbs sampler (Gelfand and Smith
1990) and the CEM algorithm. We compared its performance in a comparative simulation
study to the performance of three algorithms developed by Celleux and Govaert. Based on
results of this simulation study, we decided to use the Gibbs sampler-based algorithm for
the analysis of our data.

2. CLASSIFICATION LIKELIHOOD

Suppose that T mutational spectra X = (x0
1; . . . ; x0

T ) were generated as independent
observations from Q (Q < T ) different multinomial random variables de� ned with pa-
rameters p 1; . . . ; pQ, i.e., for each i 2 f1; . . . ; T g, there exists a unique j 2 f1; . . . ; Qg
such that xi is a realization of the multinomial random variable with the probabilitydensity
function

fm u lt(y j p j) +
Ni!

y1! ¢ ¢ ¢ yM !
py1

j1 ¢ ¢ ¢ pyM

jM ; (2.1)

where Ni = xi1 + ¢ ¢ ¢ + xiM = y1 + ¢ ¢ ¢ + yM represents the total number of observed
mutations in the ith spectrum. Each of the parameters p 1; . . . ; pQ of probability density

functions in (2.1) de� nes a cluster of mutually similar mutational spectra. Let zij be the
indicator variable stating whether the ith spectrum belongs to the jth cluster; zij = 1 if
the ith spectrum belongs to the jth cluster and zij = 0 otherwise. The assignment vector
zi = (zi1; . . . ; ziQ)0 de� nes completely to which cluster the ith vector belongs, and the
classi� cation matrix Z = (z1; . . . ; zT ) completely de� nes the distribution of all T spectra
among Q clusters. Let º j denote the proportion of mutational spectra coming from the jth
cluster, º j = (§T

i = 1 zij)=T . Prior to taking into account xi, the probability of observing
the assignment vector zi is p(zi) = ¦Q

j = 1 º
zij

j . It is further assumed that x1; . . . ; xT given
z1; . . . ; zT , respectively, are conditionally independent and

p(xi j zi) =

QX

j = 1

zijfm u lt(xi j p j) for any i = 1; . . . ; T .

Hence, the classi� cation likelihood for the data is given by

LC(Z; P) =

TY

i = 1

QX

j = 1

zij º jfm u lt(xi j p j);
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where P = ( p 0
1; . . . ; p 0

Q), and the classi� cation log likelihood is

lC(Z; P) =

QX

i = 1

TX

j = 1

zij(log º j + log fm u lt(xi j p j)).

In terms of the EM algorithm for the � nite mixture (Dempster, Laird, and Rubin 1977),
(Z; X) represents the complete data and LC(¢) is the probability distribution of the com-
plete data. lC(¢) as the clustering criterion in the context of clustering Gaussian data was
introducedby Symons (1981). Bryant (1991) refers to it as the penalized classi� cation max-

imum likelihood (CML) criterion. It can be shown that, for Gaussian data, under certain
conditions, maximizing lC(¢) is equivalent to maximizing the traditional variance criterion
(Celleux and Govaert 1992) and to maximizing the information criterion in the context of
latent class models for discrete data (Celleux and Govaert 1991). The clustering procedure
consists of identifying (Z ¤ ; P ¤ ) maximizing lC(¢).

3. MAXIMIZATION ALGORITHMS

3.1 CLASSIFICATION EXPECTATION MAXIMIZAT ION (CEM) ALGORITHM

Celleux and Govaert (1992) described three different algorithms for maximizing lC(¢).
The � rst method they called the classi� cation expectation and maximization algorithm

(CEM). Following the general EM approach as described by Dempster et al. (1977), the
algorithm consists of alternating expectation (E), classi� cation (C), and maximization (M)
steps. The algorithm generates the sequence (Zn; Pn), n = 0; 1; . . . ; which, under certain
conditions, converges to the set of optimal parameters (Z ¤ ; P ¤ ) that maximize lC(«). The
algorithm proceeds as follows.

E Step. Given current parameters (Zn; Pn), the current posterior probabilities that xi

belongs to the jth cluster are calculated as

tjn(xi) = p(zij = 1; zik = 0; k = 1; . . . ; j ¡ 1; j + 1; . . . ; G j Zn; Pn; xi)

=
º jnfm u lt(xi j pjn)

QX

l = 1

º lnfm u lt(xi j pln)

;

where

º jn =

Á
TX

i = 1

zijn

! ¿
T . (3.1)

C Step. Assign each xi to theclusterk that providesthemaximum posteriorprobability,
i.e., set zik;n + 1 = 1 and zil;n + 1 = 0 for all l 6= k.

M Step. Given the current assignments, calculate the maximum likelihood estimates
(MLE) of parameters for multinomial random variables de� ning each cluster based on the
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data currently classi� ed in the corresponding cluster,

p j;n+ 1 =

TX

i = 1

zij;n + 1xi

MX

k = 1

TX

i = 1

zij;n+ 1xik

. (3.2)

Since distribution parameters Pn are a function of the current classi� cation matrix Zn, the
sequence (Zn; Pn) generated by the CEM algorithm can be represented with the corre-
sponding sequence of classi� cation matrices Zn.

It turns out that the CEM algorithm shares advantages and shortcomings of the general
EM algorithm (Celleux and Govaert 1992). The sequence lC(Zn) is increasing in each step
of the algorithm, i.e., lC(Zn) µ lC(Zn+ 1) for each n > 0. Since there is a � nite number
of different classi� cation matrices, this implies that, for any initial classi� cation matrix Z0,
there exists m such that Zm + 1 = Zm. In other words, Pm is a stationary point for the

sequence Zn. Furthermore, if the initial point of the algorithm is suf� ciently close (details
are given by Celleux and Govaert (1992)) to Z ¤ , then the sequence Zn generated by the
CEM algorithm will converge to Z ¤ . On the other hand, the number of stationary points can
be large and to which one the algorithm will converge depends on the choice of the initial
classi� cation matrix Z0.

3.2 STOCHASTIC EXPECTATION MAXIMIZAT ION (SEM) ALGORITHM

In order to alleviate the problem of severe dependence on the initial values, Celleux
and Govaert (1992) suggested the use of the stochastic expectation maximization (SEM)
algorithm for generating initial parameters for the CEM algorithm. The SEM algorithm
has been proposed by Celleux and Diebolt (1985) as an alternative to the EM algorithm
for estimating parameters of � nite mixtures. In the SEM algorithm, the C step of the CEM

algorithm is replaced by the stochastic (S) step.

S Step. Assign xi to the jth cluster with probability tj;n(xi) for j = 1; . . . ; Q and
i = 1; . . . ; T . In this way, xi is not necessarily classi� ed into the cluster with the highest
posterior probability. It can be shown that the sequence of mixture parameter estimates
generated by the SEM algorithm forms a homogeneousMarkov chain for which ergodicity
holds (Celleux and Diebolt 1985). Furthermore, if ML estimates of mixture parameters
are the only stable � xed point for the corresponding EM algorithm, then means of random
samples obtained from the stationary distributionof such Markov chains are asymptotically

normally distributed with the mean equal to the ML estimates of the mixture parameters.
However, since ML estimates are usually not the only � xed point of the corresponding EM
algorithm, the properties of the stationary distributionremain unclear. The hybrid algorithm
suggested by Celleux and Govaert (1992) uses the SEM algorithm to generate a number of
assignment matrices. The assignmentmatrix yielding the highest lC among those generated
by the SEM algorithmis then used as the starting positionfor the CEM algorithm.The ability
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of the SEM algorithm to generate a starting position close enough to the optimal solution
after a reasonable number of iterations remains questionable.

3.3 CLASSIFICATION ANNEALING EXPECTATION MAXIMIZAT ION

(CAEM) ALGORITHM

An alternativeapproach to the idea of combiningSEM and CEM algorithms, suggested
by Celleuxand Govaert (1992), is theclassi� cationannealingEMalgorithm(CAEM). In this
algorithm, the current posterior probabilities that xi belongs to the jth group are calculated
as

tjn(xi) =
f º jnfm u lt(xi; pjn)g1=½ n

QX

l = 1

f º lnfm u lt(xi; pjn)g1=½ n

;

where ½ n ! 0 as n ! 1 and ½ n is a monotonouslydecreasing sequence.The classi� cation
of observations to clusters is again performed by random assignment according to their

corresponding posterior probabilities. It is easy to see that, when setting ½ 0 = 1, the
algorithm starts out as the SEM algorithm and, in the limit, turns into the CEM algorithm.
Using the simulated annealing terminology (Van Laarhoven and Aarts 1987), the sequence
½ n is referred to as a sequence of temperatures. The CAEM algorithm does share certain
similarities with a general simulated annealing algorithm, i.e., it starts out as a random
algorithm and, in the limit as ½ n ! 0, turns into a deterministic optimization algorithm that
increases the objective function in each step. As Celleux and Govaert concluded in their
article, CAEM seems to have a certain advantage over the traditional simulated annealing
approach since it “accepts”all new parameters, unlikeusual simulated annealingalgorithms.

Unfortunately, the convergence properties of the CAEM algorithm are generally unknown.

3.4 GIBBS SAMPLING-BASED ALGORITHMS

Since the previously described algorithms have unsatisfactory convergence properties
and performed poorly in initialtests,we havedevelopedtwooptimizationalalgorithmsbased
on the Gibbs sampler. Consider the following formulation of the clustering likelihood in

which parameters ( p j; j = 1; . . . ; Q) are replaced by corresponding estimates based only
on the current assignments:

LCG(Z) =
TY

i = 1

QY

j = 1

zij º jfm u lt(xi j p j(Z));

where p j(Z) is de� ned by Equation (3.2). The equivalence of maximizing LCG(¢) and
LC(¢) follows directly from the fact that the (Z ¤ ; P ¤ ) is the stationary point for the CEM
algorithm. Now, if we de� ne the constant

C =
X

all p os s ib le Z’s
LCG(Z);
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then

g(Z) =
LCG(Z)

C

de� nes a probability distribution function on the set of all possible assignments Z.

Furthermore, � nding the assignment Z ¤ that maximizes LCG(¢) now corresponds to
� nding the assignment Z ¤ with the highest probability g(Z ¤ ). The basic idea of the newly
proposed approach to maximizing LCG(¢) is to use Gibbs sampling (Gilks, Richardson,
and Spiegelhalter 1996) to generate a sample of observations from the probability density
function (p.d.f.) g(¢) and then to identify the assignments with high probabilities of
occurring by evaluating the obtained sample. If a suf� ciently large sample of assignments
is created, it is reasonable to assume that the assignment Z ¤ with the highest probability
of occurring will be present in the sample. The Gibbs sampling approach to generating

samples from complex multivariate distributions proceeds as follows. Suppose that Z ¡ i =

(z1; . . . ; zi ¡ 1; zi + 1; . . . ; zT ) and

gi(zi j Z ¡ i) = p(zi j Z ¡ i) =
p(zi; Z ¡ i)

p(Z ¡ i)

=
g(zi; Z ¡ 1)

QX

j = 1

g(zij = 1; Z ¡ i)

=
LCG(zi; Z ¡ i)

QX

j = 1

LCG(zij = 1; Z ¡ i)

de� nes the conditionaldistributionof the assignment for the ith spectrum givenassignments
of all other spectra. Given a current assignment Z, the iterated assignment is produced by
generating updated assignments for individual spectra from their conditional distributions,
given the current assignments for the rest of the spectra; i.e., given the rest of the

current assignments Z ¡ i, the ith spectrum is assigned to the jth cluster with probability
gi(zij = 1 j Z ¡ i). The sequence of assignments Zn generated in such a way represent
observations from an ergodic Markov chain with the stationary distribution being equal to
g(¢). Consequently,prob(Zn = Z) ! g(Z) as n ! 1, regardless of the initial assignment
Z0. Therefore, the assignments generated by this approach, after an appropriate burn-in
period, can be assumed to form a sample from the distribution g(¢). The larger LCG(Z),
the more likely it is that the assignment Z will be included in the generated sample. The
burn-in period refers to the number of assignments needed to be generated before the
Markov chain converges to its stationary distribution.The advantage of the Gibbs sampling

approach over SEM and CAEM algorithms is in its appropriate convergenceproperties. The
algorithm using the Gibbs sampler to � nd optimal assignment we call the Gibbs sampling
maximization (GSM) algorithm.

The number of distinct partitions of T observations into Q nonempty groups can be
calculated using the following (Everitt 1993):

N (T; Q) =
1

Q!

QX

j = 1

( ¡ 1)Q ¡ j

³
Q

j

´
jT .
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For example, N (40; 4) º 5.0 × 1022. It is clear that, if Z ¤
K = argmaxfLCG(Zn),

n = 1; . . . ; Kg, where Z1; . . . ; Zn are generated by the Gibbs sampler starting from Z0,
then prob(Z ¤

K = Z ¤ ) ! 1 as K ! 1 for any starting initial point Z0. However, due
to the huge size of the sample space for the random process generating Z’s, it is not clear

that any sample generated in a reasonable time will be suf� ciently large to give us a high
probability of Z ¤

K = Z ¤ . One way of assessing whether the sample size K is large enough
is to monitor Z ¤

K for different initial points Z0. If the algorithm has the same Z ¤
K for each

of a number of different initial points, it is a good indication that K is large enough and that
Z ¤ = Z ¤

K .
The alternative approach to the use of the Gibbs sampler in � nding Z ¤ is to use

assignments generated by the Gibbs sampler as starting points for the CEM algorithm.
In this approach, the ability of the Gibbs sampler to generate a representative sample from

the distribution g(¢) is combined with the ability of the CEM algorithm to identify the
assignment with the highest likelihood in the neighborhood of the initial assignment. The
primary objective of the Gibbs sampler is no longer to identify the most likely assignment,
but to generate good (i.e., proximal to Z ¤ ) initialassignments for the CEM algorithm.This is
based on the fact that the CEM algorithm will converge to the global maximum if the initial
classi� cation matrix is close to Z ¤ . The idea behind the expectation that GSM will offer a
good starting point is based on the expectation that the global maximum is surrounded by
an area of classi� cations with relatively high likelihoods. While this would be an obvious
fact for a continuous likelihood function, it is not necessarily the case for the classi� cation

likelihood.
In a case when there are many different stationary points with relatively large

likelihoods, it is important for the Gibbs sampler to generate initial positions close to
all such assignments. However, the Gibbs sampler can generally experience dif� culties in
moving between high probability areas of the state space (in our case, assignments with
high likelihoods) when such areas are separated by regions of very low probabilities. This
can cause the Gibbs sampler to move slowly through the sample space and fail to identify
all areas of high probability,causing it to generate a sample strongly dependenton the initial
values. A simple way to alleviate this problem is to modify the sampling distribution g(¢)
in such a way that differences in probabilities between regions of high probabilities and
regions with low probabilitiesare reduced while the rankings of assignmentswith respect to
their probabilities(likelihoods)remain the same. One way to achieve this is by transforming
g(¢) (Jennison 1993) as

g ¤ (Z) =
g(Z) ¹

C( ¹ )
;

where C( ¹ ) = §all p os s ib le Z’s g(Z) ¹ and ¹ < 1. It is easy to show that the corresponding

conditional distributions for g ¤ (¢) are given by

g ¤
i (zi j Z¡ i) =

g(zi j Z ¡ 1) ¹

QX

j = 1

g(zij = 1 j Z¡ i)
¹

.
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Obviously, for any two assignments Z 0 and Z 00, g(Z 0) µ g(Z 00) will imply g ¤ (Z 0) µ
g ¤ (Z 00). Hence, � nding the assignment that maximizes g(¢) is equivalent to � nding the
assignment that maximizes g ¤ (¢). On the other hand, for ¹ < 1, the Gibbs sampler based on
g ¤ (¢) is generally able to move between different areas of high probabilitiesquicker than the

Gibbs sampler based on g(¢) (Jennison 1993). For ¹ = 0, the Gibbs sampler algorithm turns
intoa procedurefor randomgenerationof possibleassignmentswith eachassignmenthaving
the same probability of being generated. An appropriate ¹ < 1 might signi� cantly increase
the speed with which the Gibbs sampler moves from one to anotherarea of assignmentswith
high probabilities while keeping the difference in probabilities between assignments with
high likelihood and those with small likelihood large enough in order to generate as few
as possible assignments with small likelihoods. In our experimentations with different ¹ ’s,
the ¹ = 0.1 seemed to be appropriate for the clustering problem considered. The algorithm

combining the Gibbs sampler and the CEM algorithm we call the Gibbs classi� cation
expectation maximization (GCEM) algorithm.

4. SIMULATION STUDY

Performances of the � ve algorithms for maximizing the clustering criterion and the
performance of the classi� cation likelihood as the clustering criterion were examined

through a simulation study. T observed mutational spectra were generated as observations
from Q different multinomial distributions representing different groups of similar
mutagenic mechanisms. If nj denotes the number of observations from the jth group
represented by mult(p1j; . . . ; pMj ; Nji), then § nj = T and Nji represent the number
of mutations generated in the ith observed spectrum from the jth group. For the whole
simulation study, the number of positions at which a mutation could occur, representing
the dimension of the multinomial distributions used to generate the data, was � xed to be
M = 10. This decision greatly reduced the computational burden in the simulation study.

Other parameters specifying simulated data were varied in order to ensure a relatively wide
applicabilityof the conclusions. For each combination of parameters, 10 different data sets
and 10 random initial arrangements of T generated spectra in Q clusters were generated.
Each of the � ve algorithms were then applied to each data set starting from each of the 10
initial arrangements. Parameters de� ning the type of the data generated were the number of
clusters (Q = 2; 3; 4), the number of spectra in each cluster (n1; . . . ; nQ = 5; 10; 20), and
the number of mutations in each spectrum (Nji = 5; 10; 20, j = 1; . . . ; Q; i = 1; . . . ; nj).
The relativeprobabilitiesfor multinomialdistributionfunctionscorrespondingto the each of
the clusters (p1j ; . . . ; pMj) were chosen to de� nedifferent degreesof separationbetween the

Q clusters.The degreeof separation,or to what degree themultinomialdistributionsde� ning
different clusters were different, was based on the effect size index e for contingency tables
de� ned by Cohen (1969). For the two multinomial distributions mult(p1j; . . . ; pMj ; N ),
j = 1; 2, with the same number of M -dimensional Bernoulli experiments N , e is de-
� ned as
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e((p11; . . . ; pM1; N )(p12; . . . ; pM2; N )) =

MX

i = 1

2X

j = 1

(pij ¡ p ¤
i )2

p ¤
i

;

where

p ¤
i = (pi1 + pi2)=2.

In his book, Cohen de� nes the difference between two multinomial distributions to be
small if e µ 0.05, medium if e º 0.1, and large if e º 0.2. The relative probabilities for

different clusters in this simulation study were chosen in such a way that the effect size
for the pairwise difference of two clusters was e º 0.05; 0.1; 0.2. Furthermore, the relative
probabilities were chosen in such a way that one category was assumed to be a “hot spot”
and had higher than average relative probability of a mutation while the remaining nine
positions were “cold spots,” with equal but smaller relative probabilities. The differences
in multinomial distributions for different clusters were due to differences in the location
of the hot spot. The hot-spot and cold-spot probabilities for corresponding e are given in
Table 1.

The number of GSM, GCEM, SEM, and CAEM samples used in determining the

optimal assignmentwas 1,000.The number of iterations for the CEM algorithmwas limited
to 1,000. However, the CEM algorithm converged to a stationary point in less than 20
iterations in all cases considered in this simulation study. The sequence of temperatures
½ i, i = 0; 1; . . . ; for the CAEM algorithm was de� ned as in Celleux and Govaert (1992),
½ 0 = 1, and ½ i+ 1 = a½ i, where a = 0.97. The adjustment of ¹ = 0.1 was used in the
GCEM algorithm.One problem in estimating multinomial probabilityparameters using the
maximum likelihood estimators as given in (3.2) is the fact that pjk;n will be zero if none
of the spectra currently classi� ed in the jth cluster had any observed mutations at the kth
position.This will then prevent any spectrum havingat least one mutation at the kth position

from being classi� ed into the jth cluster regardless of how well the number of mutations
at other positions in this spectrum agree with the p j;n. One way around this problem is to
use the Bayesian estimates assuming a uniform prior. In this case, the estimates for p ’s are
given by

p j;n + 1 =

Á
TX

i = 1

zij;n+ 1xi

!

+ 1M

Á
MX

k = 1

TX

i = 1

zij;n+ 1xik

!

+ M

; (4.1)

where 1M is an M -dimensional row vector of ones. In the same way, the estimates of
proportions of spectra belonging to a cluster can be modi� ed in order to avoid the sequence
Zn being stuck within the part of the sample space for which one of the º j ’s is zero, i.e.,
(3.1) can be replaced by

º jn =

Á

1 +

TX

i= 1

zijn

! ¿
(T + Q). (4.2)
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Table 1. Relative Probabilities in the Simulation Study Corresponding to Different Levels of the
Separation Between Clusters

e p h ot pcold

0.05 0.19 0.09
0.1 0.28 0.08
0.2 0.37 0.07

In the initial investigation, the algorithms using probability estimates as given in (4.1) and
(4.2) performed better than equivalent algorithmsusing the maximum likelihood estimates.

Therefore, adjusted estimates were used in all algorithms.
The results of the simulation study comparing performances of the � ve algorithms are

given in Table 2. The average number of times the algorithm reached Zm ax for each of 10
generated data sets, starting from 10 different initial positions, re� ects the ability of the
algorithm to consistently � nd Zm ax regardless of the starting position. The performance of
the GCEM algorithm is clearly superior to the other four algorithms, with this algorithm
producing the same or a better result than any other algorithm in all 81 scenarios. The GSM
algorithm produced the same or a better result than CEM, SEM, and CAEM in 63 out of
81 scenarios. The performances of CAEM and SEM were rather similar, while CEM, as

expected, showed the worst performance of the � ve. While such a comparison, without
taking into account the computational complexities of the algorithms, might seem unfair,
it did clearly identify the best algorithm to use, given that the computational burden is
manageable. Therefore, we decided to use the GCEM algorithm in the analysis of the actual
data.

The results pertaining to the ability of the classi� cation likelihood to recreate the
original structure of the data are given in Table 3. These results suggest that Zm ax will offer
a reasonable approximation for the underlying data structure when clusters are rather well

separated and there is a relatively large number of mutations in each spectrum.
When comparing the performance of the GCEM algorithm across different simulation

scenarios, several factors seem to be in� uencing its ability to consistently identify optimal
assignments. The most in� uential and consistent effect seems to be the pairwise level of
separation between clusters (e). The better the separation of clusters (larger e), the more
consistent is GCEM in identifying Zm ax . In a few situations for which the average Zm ax

was larger for lower levels of separation, keeping all other parameters � xed, the differences
were minimal and likely to have arisen due to chance. The other factor in� uencing the
performance of the GCEM algorithm is the size of the parameter space, which depends on

two factors: the number of clusters and the number of spectra per cluster. Out of these two
parameters, the number of clusters had a more transparent effect in our simulationstudy.For
all other parameters � xed, GCEM performed better for smaller numbers of clusters in all
situations. The effect of the number of spectra per cluster seems to be less straightforward.
This is probably due to the fact that, while increasing the number of spectra per cluster is
increasing the size of the parameter space and in this way makes it more dif� cult for GCEM
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Table 2. Results of the Simulation Study Pertaining to the Ability of Algorithms to Find Zm ax Out of 10
Trials for Each of 10 Simulated Data Sets; Average Number of Times the Algorithm Reached
Zm ax

Effect size index (e)

2.0 1.0 0.5
Number of

Number of mutations per spectrum
Number of spectra per

clusters cluster Algorithm 20 10 5 20 10 5 20 10 5

2 5 GCEM 10 10 10 10 10 10 10 10 10
GSM 10 10 9.5 9 9.2 9.9 7.9 8.4 9
SEM 7.1 4.1 2.4 4.1 3.6 1.6 3.2 4 1.1
CAEM 6.1 3.4 2.1 3.3 2.5 1.9 2.7 3.1 1.2
CEM 5.4 2 1.1 2.2 1.3 0.5 0.1 0.5 0.7

10 GCEM 10 10 10 10 10 10 10 10 10
GSM 9.4 7 7.4 8.2 2 6.9 10 8.3 4.4
SEM 7.5 3.1 2.4 3.5 1.7 1.6 2.5 1.8 1
CAEM 7.4 2.9 2.1 3.6 1.3 1.4 2 1.4 1
CEM 6.5 2.2 0.7 2.6 0.5 0.1 0.4 0 0.2

20 GCEM 10 10 9 10 10 9.8 8.9 9 9
GSM 10 6 2.2 5.2 5 6 7.8 5.1 2.3
SEM 6.8 2.2 1.6 3.3 2.4 0.9 3 1.7 1.1
CAEM 6.8 2.3 1.4 3.2 1.6 1.1 2.2 1.1 1.4
CEM 7.4 3.1 0.8 4.5 0.4 0 0 0 0.1

3 5 GCEM 10 10 10 10 10 10 8.7 9.7 9.6
GSM 10 6.3 5.7 8.9 7.9 4.5 8.4 5.6 2.3
SEM 5.5 3 0.2 2.5 1.2 0.9 4 1.5 0
CAEM 3.9 1.4 0.7 1.2 0.6 0.8 2.2 0.7 0.1
CEM 2.5 0 0.3 0.3 0 0.1 0.7 0 0.1

10 GCEM 10 8.7 9.1 9.6 6.7 8.4 6 4.8 8
GSM 8.5 2.4 2.5 5.5 1.3 0 3.2 2.1 1.1
SEM 6.8 1.9 0.4 2.7 1.3 0.2 1.7 0.1 0.5
CAEM 5 1.1 0.2 1.9 0.3 0.2 0.2 0.3 0.2
CEM 2.5 0.1 0.2 0.5 0 0 0.1 0 0

20 GCEM 10 10 8.4 10 6.3 4 1.5 3.2 2.4
GSM 8.6 1.6 1.1 6.2 0.3 0 0 0 0
SEM 8.5 2.6 0.1 4.1 0.5 0.1 0.7 0 0
CAEM 6.6 1.1 0 2.3 0.6 0.1 0 0.1 0.1
CEM 5.5 0 0 1.8 0 0 0 0 0

4 5 GCEM 10 9.9 7.4 8.7 6 6.2 3.8 5.5 6
GSM 8.6 6.5 1.3 7.8 3.1 1.5 3.4 2.3 0.3
SEM 4.8 2 0.3 2.4 0.8 0 1.5 1.1 0
CAEM 2.2 0.7 0.2 0.3 0 0.2 0 0.4 0
CEM 1 0 0 0 0 0 0 0 0

10 GCEM 10 6.7 2.5 7.7 1.5 2.5 0.9 1.6 5.1
GSM 7.9 2.8 0.2 2.3 0 0.2 0.7 0.4 0
SEM 6.5 2.9 0 2.4 0.4 0 0.5 0 0
CAEM 3.4 0.5 0.1 0.4 0 0 0 0 0
CEM 1.7 0 0 0 0 0 0 0 0

20 GCEM 10 8.4 2.3 8.7 0.8 1.3 0.7 1.3 1.2
GSM 7.9 0 0 0 0 0 0 0 0
SEM 8.7 1.1 0 0.7 0 0 0.6 0 0
CAEM 5.8 0.9 0 0.9 0.4 0 0 0.1 0
CEM 2.9 0 0 0 0 0 0 0 0
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Table 3. Results of the Simulation Study Pertaining to the Ability of the Clustering Criteria to Recreate
the Original Structure of the Data; Average Number of Misclassi�ed Spectra in the Zm ax
Classi�cation as the Percentage of the Total Number of Spectra

Effect size index (e)

2.0 1.0 0.5

Number of mutations per spectrum
Number of Number of spectra

clusters per cluster 20 10 5 20 10 5 20 10 5

2 5 1.0 12.0 27.0 18.0 25.0 31.0 32.0 41.0 37.0
10 4.5 10.5 22.0 12.5 33.5 37.0 36.0 41.5 40.5
20 1.8 10.5 24.3 7.0 31.3 37.5 40.3 43.3 43.8

3 5 6.7 25.3 33.3 23.3 34.7 34.7 45.3 48.7 52.7
10 4.7 30.0 37.3 22.0 40.0 45.3 51.7 52.7 54.0
20 3.0 15.5 33.0 10.5 41.3 53.7 53.0 58.3 58.8

4 5 10.5 31.5 37.0 34.5 42.5 52.0 52.0 54.5 54.5
10 5.8 29.0 49.8 29.3 53.5 55.0 60.0 61.5 59.5
20 4.1 17.9 42.9 19.3 52.9 59.5 61.0 66.5 66.0

to � nd Zm ax, the increase in the number of spectra is also adding more information to the
data, resulting in better de� ned cluster centers. Similar effects of the parameters de� ning the
size of the parameter space on the effectiveness of the clustering criterion in recreating the
original structure of the data is evident in Table 3; i.e., an increase in the number of clusters,
while keeping other parameters � xed, always resulted in the increase in the percentage of

the misclassi� ed spectra. On the other hand, there was no consistency in the effect of the
number of spectra per cluster. Finally, the effect of the number of mutations per spectrum
on the performance of the GCEM algorithm seems to be more pronounced for large and
medium separation levels than it is for the low separation level. For example, the average
number of times when GCEM was able to � nd Zm ax was always higher than or equal for
the high number of mutations (20) than for the low number of mutations (4.2) whenever
e = 2 or e = 1. For poorly separated clusters (e = 0.5), the effect of the number of
mutations per spectra was smaller and the trend seemed to be have been reversed. Since
it seems counterintuitive that more information per spectrum can consistently result in a

poorer performance of the maximization algorithm, this particular trend is likely a result of
random � uctuations in the shape of the likelihood function for poorly separated clusters.

5. CLUSTER ANALYSIS OF SELECTED
OBSERVED MUTATIONAL SPECTRA

The clustering procedure based on the classi� cation likelihood and the GCEM
algorithm was applied to a set of 39 observed mutational spectra identi� ed through a
literature search. The � rst group of mutagens consists of chemicals that, after interacting
with DNA, create bulky adducts that could inhibit proper base pairing and/or interfere
with DNA replication. Based on their af� nities for reacting with a certain type of DNA
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nucleotides, these mutagens are further separated into four subgroups: chemicals reacting
primarilywithguaninebases (G), chemicalspredominantlyinteractingwith guaninebut also
interacting with adenine bases (Ga), chemicals with similar af� nities for interacting with
guanine and adenine bases (AG), and chemicals predominantly interacting with adenine

bases but also interacting with guanine (Ag). The subgroup for a mutagen was determined
from the literature prior to the analysis. The second group of mutational spectra used in the
analysis consists of spectra generated after the target gene was exposed to ultraviolet light.

In the treatment of the clustering problem described so far, the number of clusters Q

was assumed to be known. We performed a statistical assessment of the number of clusters
present in the data by testing hypotheses that the model with Q + 1 clusters � ts data better
than the model with Q clusters, where Q 2 f1; 2; 3; . . .g. The statistically optimal number
of clusters Qm ax was the integer such that models with Q + 1 clusters � t data signi� cantly

better that the model with Q clusters for all Q = 1; . . . ; Qm ax ¡ 1 and the model with
Qm ax + 1 clusters did not � t data better than the model with Qm ax clusters. The test
statistic for testing the null hypothesis that the model with Q clusters is appropriate versus
the alternative hypothesis that the model with Q + 1 clusters was the log (classi� cation)
likelihood statistic

¶ ¤ = ¡ 2[lC(Z ¤
Q) ¡ lC(Z ¤

Q + 1)];

where lC(Z ¤
Q) is the maximum of lC(¢) assuming Q clusters and lC(Z ¤

Q+ 1) assuming

Q + 1 clusters. The rejection region for this test of hypothesis can be constructed using the
parametric bootstrap approach described for the mixture problem by Aitkin et al. (1981).
In our problem, the null hypothesis of Q clusters was rejected in favor of the alternative
hypothesisof Q+1 clusters whenever ¶ ¤ > ¶ m ax, where ¶ m ax = max(¶ t, t = 1; . . . ; 100)

and ¶ t is the log-likelihood statistic calculated for the tth data set simulated under the
null hypothesis (assuming Z = Z ¤

Q); i.e., the null hypothesis was rejected whenever the
estimated p-value was less than 0.01. Each of the 100 simulated data sets was created by
generating T random observations xt

iQ, i = 1; . . . ; T , from corresponding multinomial
distributions mult(^p jQ; Ni), where ^p jQ represents the estimated relative probabilities of

mutations for spectra in the jth cluster, j = 1; . . . ; Q, and zij = 1. Parameters ^p jQ of
Q multinomial distributions were estimated using the observed optimal clustering when
assuming Q clusters, i.e., ^p jQ were calculated as

^p jQ =

Á
TX

i = 1

zijxi

!

+ 1M

Á
MX

k = 1

TX

i = 1

zijxik

!

+ M

; j = 1; . . . ; Q.

Some theoretical justi� cationof this approach, in the contextof normal mixtures, is provided
by Feng and McClulloch (1996). ¶ ¤ and ¶ m ax for Q = 1; 2; 3; 4; 5 are given in Table 4. The
results of the cluster analysis for the model with � ve (C5) and six clusters (C6) are given in
Table 5.
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Table 4. Test Statistics and Critical Values for Testing the Hypothesis That the Number of Clusters Is Q

Versus the Hypothesis That the Number of Clusters Is Q + 1

Number of clusters Log-likelihood ratio statistic Maximum simulated statistics
(Q + 1) ( ¶ ¤ ) ( ¶ m ax)

2 453 69
3 316 74
4 266 78
5 147 79
6 113 69

There were two reasons for considering the model with � ve clusters as optimal for
describing our data, although there was an indication that more than � ve clusters were
present ( ¶ ¤ = 113 and ¶ m ax = 69 for Q = 5). The � rst reason was that this model
produced very intuitive and easy-to-explain clusters, while the six-cluster model produced
an additional cluster for which it was dif� cult to � nd an appropriate biological explanation.
The other reason was that the number of mutations in each spectrum varied greatly (Table
5) and, based on the functional form of the classi� cation likelihood, it seems obvious that

spectra with a large number of mutations would have a larger in� uence on the classi� cation
likelihood than spectra with a small number of mutations. In order to take into account
this potential source of bias, an additional analysis was performed. In this analysis, the
observed mutational spectra having less than 247 mutations (all except spectrum 44) were
augmentedby additionalrandomlygeneratedmutationsso that the totalnumberof mutations
in each spectrum was 247. Additional mutations were imputed in such a way that the
originally observed pattern of mutations was preserved in the augmented spectrum. In
short, probabilities of mutations at each position were estimated based on the observed

mutations and Nim p u ted = 247 ¡ Nob s erved additionalmutations were randomly generated
according to the estimated probabilities.The cluster analysiswas repeated using augmented
spectra. Results of the clustering analysis for models with three, four, and � ve clusters
were identical to the results obtained by analyzing original spectra. On the other hand, the
additionalcluster in the six-cluster model (Table 5, column 6R) made more biologicalsense
than the additional cluster generated by original spectra. The newly created cluster in this
case consisted of mutational spectra induced by exposing DNA to ultraviolet radiation and
replicating plasmids in HeLa cell extracts. All this led us to believe that, at this point, the
model with � ve clusters is optimal for the data at hand. However, further investigation of

the method using augmented mutational spectra in situations where there is a great deal of
variation in the number of mutations seems to be warranted.

6. CONCLUSIONS

Results of the analysis suggest that our classi� cation likelihood-based clustering
procedure was able to recreate a natural grouping of the mutational spectra with respect
to the characteristics of the mutagenic agent used to generate them and with respect to
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Table 5. Results of the Cluster Analysis

Spect Target Number of Mutagen
ID sites mutations type Plasmid Cell line C5 C6 C6R Reference

24 GA 146 Adduct PS189 Ad293 0 0 0 Bigger et al. (1992)
25 GA 86 Adduct PS189 Ad293 0 0 0 Bigger et al. (1992)
26 GA 140 Adduct PS189 Ad293 0 0 0 Bigger et al. (1992)
27 GA 106 Adduct PS189 Ad293 0 0 0 Bigger et al. (1992)
28 GA 98 Adduct PZ189 Ad293 0 0 0 Bigger et al. (1989)
6 Ga 93 Adduct PS189 Ad293 1 1 1 Page et al. (1996b)
7 Ga 110 Adduct PS189 Ad293 1 1 1 Page et al. (1996b)

15 G 93 Adduct PS189 Ad293 1 1 1 Courtemanche and
Anderson(1994)

17 Ga 98 Adduct PS189 Ad293 1 1 1 Bigger et al. (1990)
18 G 85 Adduct PS189 Ad293 1 1 1 Boldt et al. (1991)
19 G 48 Adduct PS189 Ad293 1 1 1 Levy et al. (1992)
20 G 49 Adduct PS189 Human 1 1 1 Mah et al. (1989)

� broblasts
22 G 68 Adduct PZ189 Ad293 1 1 1 Yang et al. (1987)
23 G 54 Adduct PZ189 Ad293 1 1 1 Yang et al. (1988)
29 G 75 Adduct PS189 Ad293 1 1 1 Bigger et al. (1991)
3 G 39 Adduct PZ189 CV-1 2 2 2 Roilides et al. (1988)

11 G 57 Adduct PSP189 Ad293 2 2 2 Maccubin et al.
(1997)

13 G 62 Adduct PSP189 Human 2 2 2 Endo et al. (1994)
� broblasts

14 G 73 Adduct PSP189 Human 2 2 2 Endo et al. (1994)
� broblasts

16 G 127 Adduct PSP189 Ad293 2 2 2 Courtemanche and
Anderson (1994)

30 Ga 97 Adduct PSP189 Ad293 2 2 2 Page et al. (1996a)
1 Ag 96 Adduct PSP189 Ad293 3 3 3 Szeliga et al. (1995)
2 Ag 105 Adduct PSP189 Ad293 3 3 3 Szeliga et al. (1994)
4 Ag 84 Adduct PSP189 Ad293 3 3 3 Page et al. (1995)
5 Ag 86 Adduct PSP189 Ad293 3 3 3 Page et al. (1995)

31 71 UV PZ189 XP-A 4 4 4 Bredberg et al.
(1986)

33 28 UV PZ189 form1 HeLa 4 4 5 Carty et al. (1995)
34 30 UV PZ189R2 HeLa 4 4 5 Carty et al. (1995)
35 55 UV PYZ289 HL18 4 4 4 Yagi et al. (1994)
36 84 UV PZ189 WI38VA13 4 4 4 Yagi et al. (1991)
37 62 UV PZ189 XP-A 4 4 4 Bredberg et al. (1986)
38 138 UV PZ189 Monkey 4 4 4 Hauser et al. (1986)

cells
39 67 UV PZ189 XP-D 4 4 4 Seetharam et al.

(1987)
40 80 UV PZ189 GM0637 4 4 4 Bredberg et al. (1986)
42 73 UV PZ189 XP-F 4 4 4 Yagi et al. (1991)
43 179 UV PZ189 CV-1 4 4 4 Keyse et al. (1988)
32 44 UV PZ189 HeLa 4 5 5 Carty et al. (1995)
41 137 UV PSP189 XP-A 4 5 4 Parris et al. (1994)
44 247 UV PZ189 CV-1 4 5 4 Keyse et al. (1988)
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experimentalconditionsappliedin the process of generatingspectra (type ofplasmid).These
results are an importantcon� rmation of the relevance of mutational spectra in characterizing
mutagenic mechanisms of different carcinogens. Results of our simulation study show
that classi� cation likelihood is a good clustering criterion for clustering multinomial

observations. Finally, the maximization algorithm combining Gibbs sampler and the
deterministic CEM algorithm (GCEM) identi� ed optimal clusterings more consistently
than any other algorithm we examined.

[Received June 1999. Accepted March 2000.]
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