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ABSTRACT
Traditional statistical clustering procedures based

on finite mixtures model require the number of mixture
components to be known prior to the analysis.
Establishing the number of mixture components from
the data is generally a difficult problem involving the
comparison of models with different number of
parameters.  We used the Bayesian infinite mixture
approach to devise a clustering procedure that does not
require the number of mixture components to be
specified in advance.  The performance of this model is
compared to the performance of the finite mixture
approach when the number of components is known as
well as when the number of components is estimated
using AIC criterion.  We showed that the infinite
mixture procedure offers comparable results to the
finite mixtures approach.

Introduction
Suppose that T multinomial observations

X=(x1`,…, xT`) were generated as independent
observations from Q (Q<T) different multinomial
random variables defined with parameter vectors
p1,…,pQ. That is, for each i∈ {1,…,T} there exists a
unique j∈ {1,…,Q} such that xi is a realization of the
multinomial random variable with the probability
density function
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where N = y1+…+yM = xi1+…+xiM for all i=1,..,T.
Each of the parameter vectors p1,…,pQ of probability
density functions in (1) defines a cluster of mutually
similar multinomial observations. The data can be
regarded to be generated by the random process in
which the parameter vector pj is selected with the
probability Prob(pj)=πj; then the observation x is
generated with the probability ) |  ( jpxmultf .  That

is, data is considered to be a random sample from the
Q-component mixture distribution
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In a clustering problem, the goal is to identify
groups of observation that are generated by the same
mixture component.  Let ci be the classification variable
indicating the cluster to which the ith observation
belongs (ci=k means that the ith observation belongs to
the kth cluster).  The assignment vector c=(c1,…,cQ)`
defines completely the distribution of all T spectra
among Q clusters. Let jπ  denote the proportion of data

coming from the jth cluster, jπ =(
=

=
T

1i
j j)I(c )/T.  Prior

to taking into account xi, the probability of observing

the classification variable ci is p(ci)=∏
=
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further assumed that x1,…,xT given c1,…,zT,
respectively, are conditionally independent, and
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p(xi|ci) = )|( j)I(c ji
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= , for any i = 1,…,T.

Hence, the Classification Likelihood for the data is
given by
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where P=( p1`,…,pQ`).  The Classification Likelihood
based clustering procedure consists of finding (c, P)
that maximize LC(.)

In terms of the EM algorithm for finite mixtures
(Dempster, Laird and Rubin, 1977), (c, X) represents
the complete data and LC(.) is the probability
distribution of the complete data.  It can also be shown
that clustering obtained by maximizing LC is identical
to the clustering generated by the classical finite
mixture approach (Celeux and Govaert, 1992).
Therefore we refer to this approach as the finite mixture
clustering.  We have previously shown (Medvedovic, et
al. 2000) that this approach can recreate original
structure of data given that the number of clusters is
known.  However, the identification of the
classification vector c* maximizing LC turned out to be
a difficult problem due to inability of available
maximization algorithms to avoid sub-optimal local
maxima (Medvedovic, et al. 2000).  Furthermore,
assessing the true number of clusters from the data is a
difficult problem on its own adding an additional level
of uncertainty to the clustering result.  In this article, we
applied the Infinite Mixtures model as described by
Neal, 2000 to clustering multinomial observations and
compared its performance to the finite mixture
approach.  The major advantage of this approach is that
the number of clusters needs not to be known.  The
clustering procedure consists of sampling from the
posterior distribution of classification vectors using a
Gibbs sampler.  We used the sequence of clustering
assignments generated by the Gibbs sampler to identify
the optimal assignment vector from the distribution of
all pair-wise assignments of individual observations.

Infinite Mixtures Model
Consider the following formulation of the problem

in terms of a hierarchical model (Neal, 1998)
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pj    ~  Dirichlet (β,…,β)

πj    ~  Dirichlet (α/Q,…,α/Q)

Except for the prior distributions for the parameters of
individual mixture components and the prior
distribution for the mixing proportions, this model is
equivalent to the mixture model (2).  When Q
approaches infinity, the conditional probability
distributions for individual classification variables are
(Neal, 2000)
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where, n-i,c is the number of observations classified in c,
not counting the ith observation, c-i is the classification
vector for all observation except ith, H-i,c is the posterior
distribution of p, based on the prior Dirichlet
distribution given in (3) and all observations xj for
which j≠i and cj=c and b is the normalizing constant.
The Gibbs sampler for sampling from the posterior
distribution of the classification vector consists of
drawing individual classification variables according to
these conditional probabilities.  Although the number of
components is theoretically infinite, the maximum
number of nonempty components is T.  After each step,
components with zero associated observations are
removed from the list of current components.  New
components are added to the list whenever a ci≠cj for all
i≠j is drawn.  If the total number of simulated
assignment vectors, after “burn-in”, is G, the T by T
assignment matrix Z is created by setting Z[i,j] to the
number of simulated assignment vectors for which
ci=cj.  Clusters are then created by putting together
observations that had equal assignments in more than
50% of generated assignment vectors.

Simulation Study
Previously we showed (Medvedovic, et al. 2000)

that the finite mixture approach performed reasonably
well when the components of the mixture generating
data are well separated and the number of events in
multinomial observations is relatively high.  Now we
applied the infinite mixture approach to some of the
same simulated data sets and compared its performance
with respect to the number of misclassified
observations to the results we obtained by the finite
mixture approach.  The simulated data consisted of 10
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data sets simulated from the model with three clusters
under three different scenario.  Each cluster had equal
number of observations.  Observations in a cluster were
generated by a multinomial distribution with 10
possible outcomes.

Scenario 1.

Multinomial parameters for the three clusters
represented well separated multinomial distributions
were:

p1=(0.37, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07,
0.07)

p2=(0.07, 0.37, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07,
0.07)

p3=(0.07, 0.07, 0.37, 0.07, 0.07, 0.07, 0.07, 0.07, 0.07,
0.07)

Number of events in each multinomial observation was
20.

Scenario 2.

Multinomial parameters for the three clusters
represented poorly separated multinomial distributions
were:

p1=(0.28, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08, 0.08)

p2=(0.08, 0.28, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08, 0.08)

p3=(0.08, 0.08, 0.28, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08, 0.08)

Number of events in each multinomial observation was
20.

Scenario 3.

Multinomial parameters for the three clusters
represented poorly separated multinomial distributions
were:

p1=(0.28, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08)

p2=(0.08, 0.28, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08)

p3=(0.08, 0.08, 0.28, 0.08, 0.08, 0.08, 0.08, 0.08, 0.08,
0.08)

Number of events in each multinomial observation was
10.

Results obtained by applying the infinite mixture
approach are contrasted to the results obtained by the
finite mixture approach assuming that the number of
components is known (Table 1) in terms of the
percentage of misclassified observations.  For each
simulated data set the Gibbs sampler described in the
previous section was started from the classification
vector corresponding that lumps all observations in a
single cluster.  10,000 full iterations of the sampler
were run with only last 9,000 (after 1,000 “burn-in”
iterations) being used in the analysis.  α and β
parameters in both prior distributions were set to 1.

As it can be seen, the finite mixture model under the
correct number of components performed better than
the infinite model.  This could hardly by a surprise
considering the fact that the information about the
number of components was not used in the infinite
mixture approach.  When the number of mixture
components was estimated from the data, finite mixture
component performed better only in Scenario 1.  By
manipulating the cut-off point for putting observations
in the same cluster we were able to somewhat trim
misclassification percentages (results not shown).

Generally, it is possible to hypothesize the number of
components from the distribution of the number of
different components in simulated classification
vectors.  These distributions for first data sets under
each scenario are given in Figures 1,2 and 3.

Table 1

Percent of Misclassified Observations

Finite MixtureScenario

Known Q AIC

Infinite Mixture

1 4.7 4.7 10.7

2 22 30 28

3 40 53 56
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Figure 1  (Scenario 1) Figure 2 (Scenario 2) Figure 3 (Scenario 3)
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Since the data in all three situations was simulated
under a model with three clusters, simulations do not
seem to be very useful in assessing the number of
mixture components present in the data.

Conclusions

We showed that the clustering method based on
the infinite mixture approach was able to moderately
well recreate underlying structure of the data.  This
method performed slightly worse than the clustering
procedure based on the finite mixture model that
requires the number of clusters to be specified.  It
also did slightly worse than the procedure in which
the number of mixture components was estimated
using AIC criterion in the situation when the mixture
components are well separated and a high number of
events is observed in each multinomial observation.
That is, in two out of three situations, uncertainties in
the process of determining the number of components
have undermined the slight advantage that the finite
mixture model had over the infinite model approach.
Furthermore, the process of maximizing likelihood in
the traditional finite mixture approach is generally a
difficult problem involving uncertainties about
whether the global maximum has been identified.  All
these issues make the infinite mixture approach a
valid alternative.

Further examinations of the sensitivity of the
procedure with respect to parameters specifying prior
distributions in the model is needed.  A natural
approach to this problem would be to consider
parameters α and β to be random and adding another
hierarchy to the model.  Such an expended model has
bee described in the context of Gaussian mixtures by
Rasmussen, 2000.  Also, finding better ways of
transforming the list of clusterings generated by the

Gibbs sampler into a single optimal clustering is
likely to significantly improve performance of the
infinite mixture approach to clustering.
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